Paleohydrology Workshop

Decision Center for a Desert City & Decision Theater, Arizona
State University
September 11, 2009

Examples of Applications of Reconstructions
to Water Resource Management

 Salt River Project — Jon Skindov (SRP)
o City of Phoenix - Steve Rossi (City of Phoenix)

* Bureau of Reclamation - Carly Jerla (BoR) and
Kiyomi Morino (U. of AZ)
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Salt-Verde Watershed Normals
B Inflow (median) —®=Precipitation (average)

Precip. (Dec-Mar): 6.3 in Precip. (Jul-Sep): 6.8 in

Runoff (Dec-May): 665 Kaf Runoff (Jul-Sep): 120 Kaf
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Salt River Project Historic Drought Periods
(Average Runoff 1889-2003 = 1,212,890 AF)
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Planning Assumptions
(1980s and 1990s)

950 KAF Full Demand
325 KAF Maximum Pumping
Historical Drought Of Record 1898-1904

Allocation/Pumping To Manage For Drought Of
Record



Storage Planning Diagram

SRP Storage, Pumping & Water Allotment Planning

2000 Minimum

UMD
Median Inflow Hmping
18004 -----N----—--F--N\-A SN
1600 +------- -\ NN - 75
Q
) o
O 1400 125 ¢
>
N 2
@ 1200 §
)
@ 200 —
S 1000 | i
0 o
= Drought of Record 250 &
> 800 f 2
% 3.0 AFIAC /\‘ S
X 600 — ;75
2.5 AFIAC \ / /\\ 325 3
400 _—

2.0 AF/AC J \ (‘_“

200 1 Maximum
Pumping

Year



% Average

100

90

80

70

60

50

40

30

20

10

Salt River Project Historic Drought Periods
(Average Runoff 1889-2003 = 1,212,890 AF)

Longer Period Of Sustajned

Drought
7 Years l
1942 - 1948 —
62% 4 Years
5y 1974 - 1977 14+ Years

ears 529% B A
1953 - 1957 ’ 1995” é009.

47% 2?

7 Years
1898 - 1904

35%

\

1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 \2000 2040

Year




Severity of Current Drought in Context of Reconstructed Record:

Figure 23b Salt + Verde + Tonto Reconstruction
2400 T 5 | ! Repord
5 5 i | —— 11-Year Running Mean 1 e
2200 5 5 Long-Term Mean {1188-1888) =
5 5 - 1950s Low
2000 : :
_ 1800
B
&
L
1400
1200
1BDD . 1 1 H 1 1 H
- Several Retonstructed Periods Were Drier thap the 1950s
1 1300 1400 1500 1600 1700 1800 1200

Ending year of 11-year period

-- Current drought was about as severe as 1950s in terms of flows
averaged over 11 years

-- 8 other droughts were as severe, according the tree-ring record

-- Late 1500s megadrought was much more severe
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Time To Rethink Old Assumptions

950 KAF Full Demand
325 KAF Maximum Pumping
Tree-Ring Drought Of Record 1575-1585

Allocation/Pumping To Manage For 11-year Tree-
Ring Drought



SRP Storage, Pumping & Water Allotment Planning
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2002 and 1996: long-term extreme lows

30 Reconstructed annual flows, SVT
2002 baseline
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How Vulnerable Are We?

e Historical Record
 Tree Ring Record
 Climate Change Scenarios

Key Question:

What is minimum flow that allows SRP to maintain
carryover storage in perpetuity?




In a climate changing world the question becomes: How much worse
(drying) before previous droughts become a problem?

Severe Droughts Capable of Depleting Surface Water Supply With The
Noted Reduction In Flow

Period Source Duration Flow Average
(yrs) Reduction | Annual % of

Median
1214-1217 Tree-ring 4 20% 40%
1579-1585 Tree-ring 7 15% 50%
1666-1670 Tree-ring 5 20% 45%
1817-1823 Tree-ring 6 20% 48%
1898-1904 Historical 7 20% 48%
1999-2002 Historical 4 20% 40%




Climate Change Projections

ASU Sensitivity Analyses:

e Each 1 Degree Of Rise = 6-7% Reduction In Streamflow
e 10% Less Precipitation = 15-20% Less Streamflow

* +3 Degrees With 10% Less Precipitation = 37-42% Less Streamflow

Bottom Line:

e Continued Warming

e 20-50% Decrease In Runoff In The Next Several Decades.




SRP Storage, Pumping & Water Allotment Planning
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How Vulnerable Are We?

PERCENT OF MEDIAN INFLOW YEARS TO RESERVOIR DRYUP

64 INDEFINITE

63 50+

60 19.5

55 9.3

50 7.3

48 6.4

45 5.4

40 4.4




Response To Decreasing Supply

“Augment” Supply To 63% Line



When Storage Drops Below The Target 63% Line:

Activate Augmentation Efforts to Raise Storage Back to the 63% Line...

Menu Of Options:

Increase Groundwater Pumping (Restoration Program)
Reduce Allocation Of Water

Purchase Central Arizona Project Water

Exercise Lease Options—Indian And Nonindian Agriculture
Recover Long Term Underground Storage Credits
Conservation Efforts

Watershed Management/Weather Modification Activities
Purchase NCS Credits

Increase Water Use Efficiency



When Storage Drops Below The Target 63% Line:

Activate Augmentation Efforts to Raise Storage Back to the 63% Line...

Long-Term Potential Areas To Consider:
1. Joint Use or Seasonal Use Of Dedicated Roosevelt Flood Control
Space

2. Modification Of State Law To Allow Long-Term Storage Of Salt
And Verde Water Underground
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Planning Timeline:
Hypothetical Worsening Shortage to 2030
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RECLAMAITION

Managing Water in the West

Paleo-Hydrology in Long-Term
Planning on the Colorado River Basin

Planning for Climate Change Workshop Series
Decision Theater, Arizona State University
September 11, 2009

( \ U.S. Department of the Interior
w " Bureau of Reclamation




Overview

Basin Overview
Observed Hydrology
Colorado River Drought
Paleo-Hydrology

Use of Paleo-Hydrology in Colorado River Interim
Guidelines Final EIS

Moving Beyond the Observed Record




Colorado River Basin
Hydrology

* 16.5 million acre-feet (maf)
allocated annually

e 13 to 14.5 maf of consumptive
use annually

« 60 maf of storage

« 15.0 maf average annual
“natural” inflow into Lake Powell
over past 103 years

e Inflows are highly variable
year-to-year

Colorado River Basin

; COLORADO

NEW MEXICO

RECLAMATION




Natural Flow
Colorado River at Lees Ferry Gaging Station, Arizona

Calendar Year 1906 to 2009

— T0-yr Average
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State of the System (1999-2009)

Unregulated Powell Powell & Mead Powell & Mead,

WY Inflow, Storage, maf % Capacity
% of Average

1999 109 47.59 95
2000 62 43.38 86

2001 59 39.01 /8
2002 25 31.56 63

2003 52 27.73 55
2004 49 ACT N 46
2005 27.16 54
2006 25.80 51
2007 24.43
2008 26.52
2009* 89 26.50

* Based on Sep 2009 24-Month Study.




Colorado River Drought

2000-2009 has been the driest 10-year period in the
observed historical record (2007 through 2009 data are
estimated)

Tree-ring reconstructions show more severe droughts
have occurred over the past 1200 years (e.g., drought in
the mid 1100’s)

Observed 2009 April through July runoff is 99% of
average (as of September 4, 2009)

Not unusual to have a few years of above average inflow
during longer-term droughts (e.g., the 1950’s)




Annual Natural Flow at Lees Ferry
Tree-ring Reconstruction and Observed Record
10-Year Running Mean

—o— Meko et al. 2007
—a—YWoodhouse et al. 2006
—a&— observed natural flow
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Interim Guidelines
A Robust Solution

Operations specified through the full range of operation for Lake
Powell and Lake Mead

Encourage efficient and flexible use and management of Colorado
River water through the ICS mechanism

Strategy for shortages in the Lower Basin, including a provision for
additional shortages if warranted

In place for an interim period (through 2026) to gain valuable
operational experience

Basin States agree to consult before resorting to litigation

R *
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CLAMATION




Colorado River Simulation System
(CRSS) A Long-Term Planning Model

Comprehensive model of the Colorado River Gotpraro River Eociny
Basin |

Developed by Reclamation (early 1970s) and
implemented in RiverWare™ (1996)

Primary tool for analyzing future river and
reservoir conditions in planning context
(NEPA EIS)

A projection model, not a predictive model
Excellent for comparative analysis

Gives a range of potential future system
conditions (e.g., reservoir elevations,
releases, energy generation)

Simulates on a monthly timestep over
decades

Operating policy is represented by “rules” that

RECLAMATION

system operates




Climate Technical Work Group

Empanelled during the development of the Interim Guidelines to:

— Assess state of knowledge regarding climate change and modeling in
the Basin

— Prioritize future research and development needs

Included members from NOAA, NCAR, CU, UNLV, UA,

Reclamation’s TSC, AMEC Earth & Environmental

Findings published in August 2007 as Appendix U to the Final EIS

Recommended that hydrologic variability likely to be most important
Impact of climate change for a decision horizon of 20 years or less

To capture hydrologic variability, recommended the use of paleo
climate information to quantify impacts

Final EIS included a quantitative analysis of increasing climate
variability using paleo climate information




2007 Final EIS Hydrologic Sensitivity
Analysis (Appendix N)

3 Hydrologic Inflow Scenarios Analyzed in Appendix
N of Final EIS

— Direct Natural Flow Record (DNF)

* Indexed Sequential Method (ISM) applied to observed record
(1906-2005)

— Direct Paleo (DP)
* ISM applied to Meko paleo record (762-2005) (Meko et al., 2007)

— Nonparametric Paleo Conditioned (NPC)
 NPC applied to Meko paleo record (Prairie, 2006)
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Lake Mead End-of-December Water Elevations
Comparison of Direct Matural Flow Record to Meko et al. Reconstruction
Mo Action {NA) and Preferred Alternative (PA)
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Moving Beyond the Observed
Record

 Now include hydrologic inflow scenarios analyzed in
Appendix N in official CRSS results

Stakeholders requesting ability to perform simulations in
CRSS with paleo data

Reclamation sponsored research using paleo to inform
yearly sequencing blended with flow magnitudes
generated by General Circulation Models

Accepted use of paleo data laying the ground work for
Incorporating climate change information in long-term
planning
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Paleo-Hydrology in Long-Term Planning
on the Colorado River Basin

Questions




ICS & Shortage: A Paleo- Perspective

Kiyomi Morino and Rosalind Bark

The University of Arizona







Intentionally
Created
surplus




* mechanism for storing water in Lake Mead
* not available during surplus or shortage
conditions.

Max Annual | Max Cum | Max Annual
Put (kaf) ICS (kaf) | Take (kaf)

ARIZONA 100 300 300
CALIFORNIA 400 1,500 400
NEVADA 125 300 300

Total 625 2,100 1,000




During drought, does the
timing a’?ﬁ amount of ICS
matter‘




Colorado
River
Simulation
system
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When?

Put Take
SCENARIO X <25 >75

SCENARIO E <50 =50
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How much?

SCENARIO X

SCENARIO E

N~ DN

Put

600
200
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200
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200
200

200
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Paleodata Sequence: 1126 - 1143
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Paleodata Sequence: 1128 - 1145
1150

1100

1050

Lake Mead Elevation (ft)

1000

2010 2015 2020 2025
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Paleodata Sequence: 1152 - 1169
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O = Above 1075 ft
1 =Below 1075 ft
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O = Above 1075 ft
1 =Below 1075 ft

1. Does ICS delay the onset of involuntary
shortage?

2. Does ICS reduce the frequency of
involuntary shortage?




Mean (Min, Max)

NO ICS 6.4 (3,15) years

PUT when <25 P600 kaf |9.2 (4,19) years

(TAKE when >75) |P200 kaf |6.9 (3,16) years

PUT when <50 P600 kaf | 8.8 (4,19) years
(TAKE when >50) |P200 kaf |7.3 (3,16) years

* TAKE = 200 kaf in all scenarios




Mean (Min, Max)

NO ICS 6.4 (3,15) years

PUT when <25 P600 kaf |9.2 (4,19) years

(TAKE when >75) | P200 kaf |6.9 (3,16) years

PUT when <50 P600 kaf | 8.8 (4,19) years
(TAKE when >50) | P200 kaf |7.3 (3,16) years

* TAKE = 200 kaf in all scenarios




2. Does ICS reduce the frequency of
involuntary shortage?




|ICS Scenarios vs NO ICS
10

o

Relative Improvement of ICS
(No. years LM >1075)
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Paleodata Sequence




No. years LM >1075

Put 600 kaf when <25p

B Put 200 kaf when <25p

Put 600 kaf when <50p

B Put 200 kaf when <50p

10
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Sequence
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IS it better to store
more water in Lake Mead?

600kaf vs 200kaf

Better 30 1.7 (1,3) yrs

<25p No diff % --

Worse 0 --

Better 22 |1.7(1,4) yrs

<50p |Nodiff [10 |-

Worse 0 --




Is It better to store water
in Lake Mead under more extreme inflow?

<25p vs <50p
Better 13 |2.3(1,7) yrs

600kaf (Nodiff | 5 -
Worse | 14 (2.3 (1,6) yrs

Better 11 |2.6 (1,7) yrs
200kaf [Nodift | 4 |-

Worse | 17 (2.6 (1,7) yrs







ICS delays the onset and reduces the
frequency of shortage.




ICS delays the onset and reduces the
frequency of shortage.

Seguence matters.




ICS delays the onset and reduces the
frequency of shortage.

Seguence matters.

Larger “Puts” reduce the frequency of
shortage.




ICS delays the onset and reduces the
frequency of shortage.

Seguence matters.

Larger “Puts” reduce the frequency of
shortage.

For smaller “Puts,” 1t 1s better to “Put”
more often.
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