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Colorado River Basin
Hydrology

* 16.5 million acre-feet (maf)
allocated annually

e 13 to 14.5 maf of consumptive
use annually

« 60 maf of storage

« 15.1 maf average annual
“natural” inflow into Lake Powell
over past 100 years

e Inflows are highly variable
year-to-year

Colorado River Basin

; COLORADO

NEW MEXICO

RECLAMATION




Natural Flow
Colorado River at Lees Ferry Gaging Station, Arizona
Water Year 1906 to 2008
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State of the System (1999-2008)

Unregulated inflow Powell and Mead Powell and Mead

WY into Powell Storage, maf % Capacity
% of Average

1999 109 47.59 95
2000 62 43.38 86
2001 59 39.01 /8
2002 25 31.56 63
2003 52 27.73 55

2004 49 23.11 46
2005 27.24 54

2006 72 25.80 51
2007 68 24.43
*2008 102 26.52

*Based on October 24 Month Study




Colorado River Drought

2000-2008 has been the driest 9-year period in the
100-year historical record (WY 2007 and WY 2008
data are estimated)

Tree-ring reconstructions show more severe
droughts have occurred over the past 1200 years
(e.g., drought in the mid 1100’s)

Observed 2008 April through July runoff was 112%
of average (as of Oct 6, 2008)

Not unusual to have a few years of above average
Inflow during longer-term droughts (e.g., the 1950’s)




—=—Meko et al.
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Interim Guidelines
A Robust Solution

Operations specified through the full range of operation for
Lake Powell and Lake Mead

Encourage efficient and flexible use and management of
Colorado River water through the ICS mechanism

Strategy for shortages in the Lower Basin, including a
provision for additional shortages if warranted

In place for an interim period (through 2026) to gain valuable
operational experience

Basin States agree to consult before resorting to litigation
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Potential Impacts of
Changing Climate

Historical data shows slight change in mean annual flows over
time and large variability year-to-year

Potential for decreased mean annual flow as well as increased
variability

Recent publications project a wide range of potential impacts
(from O to up to 45% decrease in the mean annual flow)

Additional research needed to better quantify uncertainties and
Improve understanding of risks

Research Efforts

— Climate Technical Workgroup (NOAA, UCAR, CU, UNLV, UA, Reclamation, AMEC)
advised recent EIS efforts

— On-going research and development in order to use climate change
scenarios in our decision-making

Information in Section 4.2, Appendix N and U available at:
http://www.usbr.gov/lc/region/programs/strateqgies.html




Hydrologic Sensitivity Runs

3 hydrologic inflow scenarios analyzed in FEIS Appendix N:

— Direct Natural Flow Record
* |ISM applied to natural flow record (1906-2005)
Direct Paleo
 ISM applied to Meko - paleo flow (762-2005) (Meko et al., 2007)
Nonparametric Paleo Conditioned
 Meko - paleo conditioned (prairie, 2006)
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— ‘Migodhouse et al, 2006 (1490-1997) — Sat River Project (M 1520-1964)
- - observed record (Y 1906-2003) Stockton & Jacoby, 1976 (Y 1520-1981) Hidalgo (Y 1520-1962)
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Woodhouse et
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Alternate Stochastic Techniques

« Paleo conditioned
— Combines observed and

Input Dbl

paleo streamflows X 5] indexseq

Mode: | Concument
— (Generates
 Observed flow magnitudes Dessrption | Dutput

 Flow sequences similar to paleo
record

Index Sequential / D] Mode; ':'-::} Caonnbinations {E} Fairz

Ok Apply Feset Cancel
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Paleo Conditioned Modeling Framework

Streamflow Generation Combining
Observed And Paleo Reconstructed Data

Nonparametric Space-Time
Disaggregation

Decision Support
System

RECLAMATION




Streamflow Generation

Nonhomogeneous Markov model

Generate system state

(S:)

l.e., wet or dry

Generate flow conditionally
(K-NN resampling)

f (Xt‘St , St—l’ Xt—l)

RECLAMATION




Threshold
(e.g., median)
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Drought Deficit
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Histograms of Dry Periods
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Histograms of Wet Periods
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Flow

max length is 6 years
at 0.04 probability
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Paleo Conditioned Modeling Framework

Streamflow Generation Combining
Observed And Paleo Reconstructed Data

Nonparametric Space-Time
Disaggregation

Decision Support
System

RECLAMATION




Colorado River Basin
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Disaggregation scheme

Index gauge
Lees Ferry #B€

temporal

disaggregation
annual to monthly at
index gauge

spatial

disaggregation
monthly index gauge
to monthly gauge

1
2
3
4

Colorado River at Glenwood Springs, Colorado
Colorado River near Cameo, Colorado

San Juan River near Bluff, Utah
Colorado River near Lees Ferry, Arizona




Paleo Conditioned Modeling Framework

Streamflow Generation Combining
Observed And Paleo Reconstructed Data

Nonparametric Space-Time
Disaggregation

Decision Support
System

RECLAMATION
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Colorado River '@wm».,fm;mal.@-. a s
Simulation )
System (CRSYS)

Requires realistic
iInflow scenarios

Captures basin
policy
Long-term basin
planning model

Developed in
RiverWare
(Zagona et al. 2001) \Q
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CRSS Modeling Assumptions —

Alternate Hydrologic Sequences
PR

W’% | "'ﬁ ,-“_ﬁ  |ndex Sequential
5 Method & Alternate
Stochastic Techniques

o Alternate Hydrologic
Seqguences & Results

RECLAMATION




Comparison of Inflow Scenarios
“Box Plots”

Direct Natural
Flow

Direct Paleo —
Meko 2007

Direct Paleo —
Woodhouse
2006

Paleo Conditioned
Meko 2007

Paleo Conditioned
Woodhouse 2006

Parametric
Stochastic
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Lake Powell End-of-December Water Elevations
Probability of Being Below Minimum Power Pool
(Percent of Values Less than or Equal to Elevation 3,490 feet msl)

---»--- Oirect Natural Flow Recard (NA)
—— Direct Matural Flow Record (PA)

---EF-- Nonparametric Paleo Conditioned (MA)
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Lake Mead End-of-December Water Elevations
Probability of Being Below SNWA Intakes

(Percent of Values Less than or Equal to Elevation 1,000 feet msl)

---¥--- Direct Matural Flow Fecord [A)
——Direct Matural Flow Fecord (P&)
---EF-- Monparametric Paleo Conditioned (MA)
—=—Monparametric Paleo Conditioned (FPA)
---&-- Direct Paleo (MA)

—s— Direct Paleo (PA)

=]
-—
"
=
=
SN ]
—
=]
=
m
=
e
g
-
=
[z
-
e
=]
h
=
-]
o
[t
=)
=1

2030 2035

Year




Glen Canyon Dam 10-Year Release Volume
Water Years 2009-2060
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Comparison of Long-Term Planning Hydrologies based
on Different Blends of Instrumental Record,
Paleoclimate, and Projected Climate Information

(Brekke, Prairie, Pruitt, Rajagopalan, Woodhouse, 2008)
(funded from S&T, UC, GP)

Research Questions

1. How can paleoclimate and projected climate information be jointly and
rationally incorporated into planning assumptions for water supplies,
hereafter referred to as planning hydrology?

How would such a planning hydrology be similar to or different from
planning hydrology developed to individually reflect paleoclimate or
projected climate?

3. What implementation realities might influence choice among
climate information sets when defining water supply planning

assumptions for Reclamation studies?




Combining paleo-reconstructed

variability with projected future flows
Extension of existing framework

e System State
— Paleo-reconstruciton
— Woodhouse et al.

Magnitudes
— Replace observed record with projected climate data
— Runoff magnitudes generated with CBRFC rainfall runoff model

Two Case Studies

1. Missouri River at Touston

2. Gunnison River at Grand Junction

Four climate information sets

1. Null — state: observed magnitude: observed

2. Alt 1 - state: paleo magnitude: observed

3. Alt 2 —runoff projections direct from rainfall runoff model
4. Alt 3 —state: paleo magnitude: runoff projections
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Missouri River Basin - State

e Reconstructed streamflow
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Missouril River Basin - Magnitudes

 Observed Record and Projected Runoff
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1951-1999

e Alt2
Only projected climate
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2070-2099
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Only projected climate
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instumental flow record (WY 1951-1933)
O u I I l e palecclimate flow reconstruction (WY 1576-1996)

Climate Information Set #2 (2040-20693)
Climate Information Set #3 (2040-2069)

Blue — observed
Red — paleo
Orange - Alt 2
Purple — Alt 3

Deficit Volume (MAF)

Spell length

instumental flow record (WY 1951-1989)
palecclimate flow reconstruction (WY 1576-1996)
Climate Information Set #2 (2040-2069)
Climate Information Set #3 (2040-2069)
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Key Study Findings

“How can paleoclimate and projected climate information be jointly and rationally
incorporated into a planning assumptions for water supplies, hereafter referred to as
planning hydrology?” The stochastic modeling approach used in this study
illustrates one such framework. It was modified from previous demonstrations
to incorporate projected runoff magnitudes rather than instrumental record
magnitudes

“How would such a planning hydrology be similar to or different from planning
hydrology developed to individually reflect paleoclimate or projected climate?”, Based
on results summarized earlier, the Alternative 3 planning hydrology was found
to exhibit similar annual runoff possibilities as Alternative 2. For the Upper
Missouri, where the persistence in the reconstructed runoff record differed
significantly from that in the climate projections, the longer-term drought
possibilities portrayed in Alternative 3 differed accordingly from those in
Alternative 2. This result was not found for the Gunnison.




Key Study Findings

“What implementation realities might influence choice among climate information sets
when defining water supply planning assumptions for Reclamation studies?” Efforts
required to disaggregate these annual, single-location hydrologic datasets into
monthly, multi-location datasets suitable for planning could have significant
influence on scoping choice. In addition to disaggregation issues, the relative
ease of introducing flow-impairments, specifying demand and constraint
assumptions, and educating stakeholders and decision-makers on the new
hydrology’s characteristics may also be a scoping factor. It’'s notable that the
complete data-development procedures necessary to support Alternative 2
must still be completed before Alternative 3 can be implemented.




Future Direction

Blending climate projection data distribution with
sequences generated from paleo and observed data

Reconcile range of runoff reduction at Lees Ferry for
many climate projections (Nov 14 workshop)

Lower Basin focused paleo streamflow
reconstruction

Conditioning future scenarios on large scale climate
features (i.e., ENSO, PDO)

Colorado River Basin Hydrology Work Group




Combining pal‘er) reconstructed
variability with observed and
prOJect@d fﬁture flows




Combining paleo-reconstructed
variability with observed and
projected future flows

For further information:
http://www.usbr.gov/lc/region




