Tree-ring reconstructions of streamflow and
their use In water management
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Part 1:

Context and Background
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The conundrum of (water) management

We need to make decisions about the future, but we don't
know much about it.

So how do we generally make decisions?
Based on past experience.



Learning from experience in water management

Colorado at Lees Ferry
Gaged (natural flow) record, 1906-1930
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Learning from experience in water management

Colorado at Lees Ferry
Gaged (natural flow) record, 1906-1963
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Learning from experience in water management

Colorado at Lees Ferry
Gaged (natural flow) record, 1906-2004
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You can never have too much experience



Tree-ring reconstructions - a surrogate for experience

annual flow, MAF
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Tree-ring reconstructions - a surrogate for experience

By extending the gaged hydrology
by hundreds of years into the
past, the reconstructions provide
a more complete picture of
hydrologic variability

Colorado at
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Tree-ring reconstructions - a surrogate for experience

Payoff:
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Paleoclimatology = records of pre-instrumental
climate
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Tree rings

Paleoclimatology reveals what has actually happened
Jonathan Overpeck



Key attributes of tree rings as a climate proxy

e Annual resolution
« Continuous records (100-10,000 yrs)

« High sensitivity and fidelity to climate
variability

e Widespread distribution




Dendrochronology:

the science that deals with the dating
and study of annual growth layers in

wood
Fritts 1976




Dendrochronology

@ 2

Dendroclimatology

Dendroarchaeolo -
endroarc gy The science that uses tree

Dendroecology rings to study present
climate and reconstruct past
Dendrogeomorphology .
climate

etc.
: 1

Dendrohydrology
The science that uses tree
rings to study changes in
river flow, surface runoff,
and lake levels



Key advances in dendrochronology,
dendroclimatology, and dendrohydrology

1905-1920 - Douglass establishes modern tree-
ring science; links tree-growth and
climate in Southwest

1930s - First studies relating tree growth to runoff
In western US

1940s - Schulman investigates history of
Colorado River flow using tree rings

1960s - Fritts models physiological basis of trees’
sensitivity to climate; develops modern
statistical methods for climate
reconstruction

E. Schulman



Key advances in dendrochronology,
dendroclimatology, and dendrohydrology

1976 - Stockton and Jacoby reconstruction of Lees
Ferry streamflow

1980s - Cook and Meko refine statistical tools for
chronology development and reconstructions

2000s - Many new flow reconstructions for western US
and Colorado

2006 - Woodhouse et al. reconstruction of Lees Ferry
and other Colorado basin gages



My little piece of this history

1998 - 2001 Fire history research in Black Hills, Front Range,

San Juans

2000 - 80 new tree-ring collections across Colorado
and the West for dendroclimatology and
dendrohydrology

2002 - Use of those collections to reconstruct

streamflow in collaboration with water managers

2005 - Workshops to explain the development and
application of the tree-ring reconstructions



Part 2:

How tree rings record climate information
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CROSS SECTION of a CONIFER The formation of
annual growth rings

e New wood forms in the
vascular cambium, underneath
the bark

« Earlywood + latewood =
growth ring

e |In temperate climates, growth
ring = annual ring

* Rings have varying widths
when a limiting factor on
growth varies in magnitude
from year to year




Climate is typically the main limiting factor
on tree growth in the West

9

e At high elevations, growth is
typically limited by summer warmth
and length of the growing season

* At lower elevations, growth Is
typically limited by moisture
availability




Climate is not the only influence on growth
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The main goal is to increase Signal:Noise ratio
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Moisture sensitivity

« “Moisture-sensitive” trees are ones whose year-to-year ring-
width variability mainly reflects changes in moisture
availability

 These changes are driven mainly by precipitation
 Temperature, humidity, and wind play lesser roles, by

modifying evapotranspiration (moisture losses from soil and
directly from tree)



Example of moisture signal as recorded by a
single tree - western Colorado

Western CO Annual Precip vs. Pinyon ring width (WIL731)
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* Here, the “raw” ring widths from one tree are closely correlated
to the annual basin precipitation (r = 0.69)

 Qur job is to capture and enhance the moisture signal, and
reduce noise, through careful sampling and data processing



This moisture signal can be a proxy for multiple
moisture-related variables

 Annual or seasonal precipitation
e Drought indices (e.g., PDSI)
e Snow-water equivalent (SWE)

e Annual streamflow

These variables are closely correlated in this region, and
trees whose ring widths are a good proxy for one tend to be
good proxies for all of them



Ring-width and streamflow - an indirect but
robust relationship

« Like ring width, streamflow integrates the effects of
precipitation and evapotranspiration, as mediated by the
soll

PRECIPITATION SURFACE
EVAPO- - & SUB-
TRANSPIRATION SURFACE

% INFLOW

-~
OUTFLOW

Image courtesy of D. Meko (U. AZ)



Principal moisture-sensitive species - CO, UT, AZ, NM

Douglas-fir Pinyon Pine Ponderosa Pine
500-800 years 500-800 years 300-600 years



Seasonal climate responses by species - western US

Growth response (annual ring)

Douglas-fir

M Ponderosa
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TO GROWTH GROWTH

MONTH
Precipitation

fFMLimber Pine .
» All species respond

mainly to precipitation in
fall/winter/spring prior to
growing season

Some variation in shape
of the “response
window”

from Fritts 1976



Stressful sites produce ring series with greater

sensitivity (higher Signal:Noise ratio)

WATER TABLE

GOMPLACGENT SENSITIVE
RING SERIES RING SERIES

from Fritts 1976



Characteristics of stressful sites

Uplands, not near stream
— well above water table

Thin, rocky solls
— low retention of soil moisture

Steep slopes
— low retention of soil moisture

South- or west- facing
— greater heating, more stress

Low tree density
— less noise from competition,
fire, insects




Gallery of stressful sites




Part 3:

Building a tree-ring chronology
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Chronology = basic unit of tree-ring data, “building block”
for the flow reconstruction



Steps in Building a Tree-Ring Chronology

Multiple samples
at a site

Preparing
samples

Crossdating
Measuring

Detrending

Series (of
ring-width
indices)
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Sampling to develop a site chronology

Sample 10-30+ trees at a site, same
species

o Select old-appearing trees

e Goal: maximize the sample depth
throughout the chronology (300-800+
years)

— chronology quality is a function of
sample depth

— depth always declines going back in
time, since oldest trees are rarer




Sampling living trees

 Increment borer collects core 4-
5mm in diameter, up to 20" long

e Causes minimal injury to the
tree



Sampling dead trees (“remnant” wood)

* |ncrement borers can also be
used to sample remnant wood
(stumps, snags, logs)

 But it's often better to saw cross-
sections




Sampling to develop a site chronology

Collect two cores (radii) from each
tree, extending to the pith

 The two radil are from opposite
sides of the tree

— average out within-tree ring-width
variability

— facilitate identification of absent and
micro rings

Schematic of coring
for typical tree



Preparing the cores

Cores are left to air dry
for at least a few days,
then glued to wooden
core mounts

Cores and sections are
sanded with a belt
sander, then hand-
sanded to 1200-grit

Individual cells
(tracheids) must be
clearly visible
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Crossdating the samples

 Because of the common climate signal, the pattern of wide
and narrow rings is highly replicated between trees at a site,
and between nearby sites

« This allows crossdating: the assignment of absolute dates to

annual rings
1900 1910 1920 1930
" o ! i 1 ~—r T o : » .
s . 1 11 Two
=€ \ \ , EERE N Douglas-fir
— e B trees south
. of Boulder,
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Regional climate patterns = regional crossdating
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Crossdating allows the extension of tree-ring
records back in time using living and dead wood

Image courtesy of LTRR (U. AZ)



Cross-dating the samples

« Crossdating cores from living trees is usually straightforward,
since the outside date is known

« Main challenge is inferring absent rings from pattern
(mis)matches with other trees

— frequency of absent rings ranges from 0 - 4% per site
— cores with up to 10% absent rings can be crossdated

1977 present but 1977 inferred to
very narrow be absint
-
~ “ . .

EGL 261 EGL 042



Measuring the samples

Computer-assisted
measurement system
— linear encoder captures
position of core to nearest
0.001mm (1 micron)
— real-world precision is ~3
microns
— typical ring-width is 500-1000
microns

Measurement path is
parallel to the rows of cells
(and perpendicular to the
ring boundaries)



Assessing the quality control of dated/measured series

PART 5:

CORRELATION OF SERIES BY SEGMENTS:
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The program COFECHA =

series with a master
chronology derived from
the other series :

Easy to identify the rare :
series that has been mis- :
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common site signal
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Using COFECHA for quality control

Seq Series Time_span 1725 1750 1775 1800 1825 1850 1875 1900 1925 1950
1774 1799 1824 1849 1874 1899 1924 1949 1974 1999
1 rprO51 1849 1920 .68 .78 .87
2 rprO7/ 1854 1997 .83 .85 .89 .90 .86
3| rpro61l 1745 1936 .23B .26B .26B .18B| .48 .89 .93 .81
4 rprOll 1860 1997 .65 .71 .83 .90 .86
5 rpr092 1864 1997 .70 .77 .71 .84 .88
6 rpr09l 1878 1997 .74 .76 .87 .87
7 rpr061 1743 1997 .37B .39B .65B .76 .81 .91 .92 .92 .90 .89
8 rpr08l 1871 1997 .76 .78 .87 .80 .68
9 rpr052 1848 1997 .85 .85 .92 .89 .93 .93
10 rprO51 1848 1997 .88 .88 .91 .90 .92 .91
rprO61 1745 to 1936 192 years

[A] Segment High -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 +0 +1 +2

1745 1794 -2 - Iss*| .14 |.23] .12 .03
1750 1799 -2 .05 .10 .06 .45 .09 |.86*|.17 |.26] .10 .05
1775 1824 -2 (15 .21 .40 .14 .28 .02 .40 .16 |80* .27 |.26] .10 .18

1800 1849 -1 .06 .03 _.22 .41 _.15 .17 .01 .08 .10 |.65*| .18| .14 .35




Detrending the measured series
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Ring-width series typically
have a declining trend with
time due to tree geometry,

These trends are low-
frequency noise (i.e. non-
climatic)

Raw ring series are
detrended with straight line,
exponential curve, or spline

These standardized curves
are compiled into the site
chronology



Example of detrending - 2 trees, same site

Before detrending
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Effects of detrending choice - VBU chronology

— 1/3 length spline
— 2/3 length spline
— Neg. exponential/straight line
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» Choice of function(s) for detrending can affect final
chronology, but the differences are usually not large



Coherence of signal among series at one site
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Persistence in tree growth from year to year

e The climate in a given year e Y
(t) can also influence growth chimaz= Tear
in succeeding years (t+1, N
t+2, etc.) through storage of
sugars and growth of
needles

BUDS LEAVES

e This persistence is typically
greater than the persistence Co, W,  HOmMowes  rFRUITS

In hydrologic time series ZZ;E é;:é g:\g g{;g

wP
uto- Y&
correlation

t-1 t t+1 t+k




Persistence in the chronology can be retained
or removed

— Standard chronology: persistence in the series is retained

— Residual chronology: low order persistence is removed
from each series before the chronology is compiled

Lag 1r=0.356 Van Bibber Update (ponderosa)
2 -

Residual
— Standard
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Compiling the chronology
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New moisture-
sensitive
chronologies
In Colorado

« Average length:
550 years

e Strong
relationships with
annual
precipitation and
annual
streamflow
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A\ Pinyon Pine (PIED)

WYOMING

[DAHO £ Ponderosa Pine (PIPO)
A };_\.,G\SH
%
% z s
(o) . i
UTAH %,p A
207 P o YD
¥ Whpy & :
Yampa R. SEE A Bﬁs& Aowu
; : i BTU
QPQ- APLU ’D':Li' A pet®
i - JAM w W
Q‘R-' | CEHE%WFHIE R r’UMéHIOATSS BELLLJ ooV
. VEL
_ TRG : DI :
| Abou  ARF AAEC 4 MI—."r’ﬁ}‘Jl_U ABFE
oo A=,
SRS WL LAN nary A AWR
A uw;\% i Ar Pﬁ\‘ﬁmceﬂﬁg
EFU PRP x i
E %p HC;}\R MaD &TCP CLLORADL
- MTR -t
&:3' DR‘r’/_\ﬂ SAPA Agob I EMASTU
& ASLK CAT e Do -
P ADIs i A47C & Avve #‘?’?-S‘a's,@
. MCP X &Gfang'e ik
! > Acce JARPR
g SANMY AGVR Ao AKIM
: : MOM & 4 SPC
[ o CPP CP|
oén Jilan . %LTHE:. CDH&
T =]
LN, NEWMEXICO — pmu
| | 1
50 100 150 mi.




Three pinyon chronologies near Durango vs. Animas
at Durango gaged mean annual discharge
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The larger world of tree-ring chronologies

International Tree-Ring Data Bank (ITRDB)
http://www.ncdc.noaa.gov/paleo/treering.htmi

e 2500 chronologies contributed from all over the world

 Can be searched by moisture-sensitive species,
location, years



Part 4.

Generating the streamflow reconstruction
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Reconstruction = best estimate of past flows, based on the
relationship between a selected set of tree-ring data and
gaged flows



Assumptions behind the reconstruction
methodology

1) That the relationship between tree growth and
streamflow has been stable over the past several
centuries

2) That the trees that do the best job of estimating the
gaged flows will do the best job of estimating the pre-
gaged-record flows

- Can't test these assumptions directly, but coherence
among the tree-ring data gives us more confidence in
them



Tree-ring index

Tree-ring index

Tree-ring index

Three pinyon chronologies near Durango
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Overview of reconstruction methodology

Tree Rings Observed Streamflow
(predictors) (predictand)

' '

Statistical Calibration: regression

Reconstruction Model 4—>_

Streamflow reconstruction

based on Meko 2005



Data selection - observed streamflow record

 Length — minimum 50 years for robust calibration
with tree-ring data

 Natural/undepleted record — must be corrected
for depletions, diversions, evaporation, etc.

50,000 Fraser River at
Winter Park
40000 14wk
1 \ AW Undepleted Flow
8 30000 (from Denver
3 Water)
L 20,000 A
USGS Gaged
10,000 4 Flow

|:| I 1 1 1 I I 1 1
1916 1926 1936 1946 1996 1966 1976 1986 1996



About natural/undepleted flow records

 Record/estimates/models of depletions and diversions
often inadequate, especially in early part of record

 The resulting uncertainties are added to typical errors in
gage record (~5-10%)

e Our naive view was: Flow record is “gold standard”,
and where the tree-ring record varies from it, the trees
are in error

« More realistic view: Flow record Is a representation of
actual flow, and discrepancies with tree-ring
reconstruction could be due to errors in the flow record

 The reconstruction can only be as good as the flow
record on which it is calibrated



Data selection - tree-ring chronologies

 Moisture sensitive species - in Colorado and
Southwest: Douglas-fir, ponderosa pine, pinyon
pine

 Location — from a region that is climatically linked
to the gage of interest (more on this later)

e Years -

Last year close to present for the longest
calibration period possible

First year as early as possible (>300 years)
but in common with a number of chronologies

* reconstructions are limited by the shortest
chronology

ITRDB demo



Physical linkage between tree growth and
streamflow — regional climatology

e Chronologies up to 300-400 miles from a gage may
be significantly correlated because of a
homogeneous climate across the region

 Because weather systems cross watershed divides,
chronologies do not have to be in same basin as
gage record

« At greater distances, any correlation could be due
to teleconnections, which may not be stable over
time




Correlations: Tree-ring chronologies - Lees Ferry streamflow
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After data selection and evaluation, a pool of
potential tree-ring predictors is generated

ApAa, A A )
A AR ACA A AA A A
A A A A Screened for A A A
ﬁ A& A A | -correlations A A
A}AAAAA A L5 AA ,
Aah, at Y

* Typically, the pool contains from 10-30 chronologies

 |f the pool is too large (>50 chronologies), the chance of
a spurious predictor entering the model increases



Reconstruction modeling strategies

* Individual chronologies are
used as predictors in a stepwise
or best subsets regression

OR

 The set of chronologies is
reduced through Principal
Components Analysis (PCA)
and the components
(representing modes of
variability) are used as predictors
INn a regression

Tree-ring chronologies (predictors)

\

Statistical calibration: regression

Tree-ring chronologies

\ 4

Principal Components (predictors)

¥

Statistical calibration: regression

These are the most common, but many other approaches are possible
(e.g., quantile regression, neural networks, non-parametric methods)



Reconstruction modeling strategies

Individual chronology and PCA-reduced reconstructions, Colorado at Lees Ferry
(10-yr running mean)
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* The differences in final output between the two main
strategies may not be very large, particularly if the
primary predictor chronologies in the stepwise
regression equation are dominant in the first few
principal components



Model validation strategy

Goal: to calibrate model on a set of data, and validate the
model on an independent set of data

Split-sample with
Independent calibration
and validation periods

OR

Cross-validation (“leave-
one-out”) method

700000 ohs
—— 8 stepps

600000 -

500000 -

400000 A

300000

200000 -

100000 -

Calibration Validation
1915 1925 1935 1945 1955 1965 1975 1985 1995

700000 ohs
— 8 steps

600000 -

500000 -

400000 -

300000 -

200000 -

100000 -

Calibration/validation

1915 1925 1935 1945 1955 1965 1975 1985 1995



Model calibration: Forward stepwise regression

1) The chronology that explains
the most variance in the flow
record is selected as the first
predictor in the regression

2) The chronology that explains
the most remaining
unexplained variance in the
flow record is incorporated
Into the regression (repeat)

3) The process ends when no
additional chronology
significantly improves the fit of
the regression to the flow
record

A A

A A A A




Colorado at Lees Ferry - forward stepwise regression
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Colorado at Lees Ferry - forward stepwise regression
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Colorado at Lees Ferry - forward stepwise regression
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Colorado at Lees Ferry - forward stepwise regression
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Colorado at Lees Ferry - forward stepwise regression
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Colorado at Lees Ferry - forward stepwise regression
i\__; Variance Explained
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Colorado at Lees Ferry - forward stepwise regression
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Model validation and skill assessment

e Are regression assumptions satisfied?

e How does the model validate on data not used to
calibrate the model?

 How does the reconstruction compare to the gage
record?



Are regression assumptions satisfied?

Analysis of residuals
Residuals are assumed to have:

« NO significant trend with time

« NO significant changes in variance over time

* NO significant autocorrelation

* NO significant correlation with the model estimates
* NO significant correlation with individual predictors
e normal distribution



How does the model validate on data not used to
calibrate the model?

Validation statistics — based on withheld data or data generated In
cross-validation process, compared to observed data

Calibration Validation

Gage R2 RE*
Boulder Creek at Orodell 0.65 0.60
Rio Grande at Del Norte 0.76 0.72
Colorado R at Lees Ferry 0.81 0.76
Gila R. near Solomon 0.59 0.56
Sacramento R. 0.81 0.73

R2 and RE should be similar, and ideally above 0.50 -
though much above 0.80 suggests overfitting

*RE is Reduction of Error statistic; tests model skill against “no knowledge”



Prevention of overfitting

- An over-fit model is very highly tuned to the calibration
period, but doesn’t perform as well with data not in the
calibration period (less predictive skill)

- In regression modeling, we can get fixated on R?, but
validation statistics like RE are a better measure of the
quality of the model



Prevention of overfitting
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» For this particular model (Gunnison R. at Crystal Res.), the
validation RE is not improved appreciably with more than 5
predictors (red line)



How does the reconstruction compare to the gage

record?

30

Observed

25 -

20 -

15 -

10 -

Annual Flow (MAF)

5,

0 |

Observed vs. reconstructed flows - Lees Ferry | — Reconstructed

1905

Mean
Max

Min
StDev
Skew
Kurtosis
AC1

1915 1925 1935

Observed Recon'd

15.22 15.22
25.27 23.91

5.57 4.71
4.32 3.88
0.16 -0.14
-0.58 -0.37
0.25 0.04

1975 1985 1995

The means are the same, as expected
from the the linear regression

Also as expected, the standard
deviation in the reconstruction is lower
than in the gage record



Subjective assessment of model quality
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o Are severe drought years replicated well, or at least
correctly classified as drought years?



Subjective assessment of model quality

30 - Observed
—— Reconstructed
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o Are the lengths and total deficits of multi-year droughts
replicated reasonably well?



From model to full reconstruction

Tree-ring chronologies (predictors)

Reconstruction model <P |\ odel evaluation

!

Time series of reconstructed streamflow

 When the regression model has been fully evaluated
(residuals and validation statistics), then the model is

applied to the full period of tree-ring data to generate the
reconstruction



Full Colorado R. at Lees Ferry streamflow reconstruction,
1490-1997
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« Green = annual values
« Black = 10-yr running mean



Uncertainty in the reconstructions

e Tree-ring data are imperfect recorders of climate and
streamflow, so there will always be uncertainty in the
reconstructed values

* The statistical uncertainty in the reconstruction model can
be estimated from the validation errors (RMSE)

« RMSE only summarizes the uncertainty associated with a
specific model, which is the result of many choices in the
treatment of the data and development of the model

* The uncertainty associated with these data and modeling
choices is not formally quantified but sensitivity analyses
can help assess their impacts (e.g., set of chronologies,
gage data/years used, modeling approach, treatment of
data).



Using RMSE to generate confidence intervals for
the model

30
Colorado R. at Lees Ferry
i
20 - | I ’ ‘ : :
| Ry N
| M \ /N .
< 15 - "'r'u '- N A\ T D
= ’ ‘. 'f ' ‘ \ : k ’ \
10 | ‘ ’ \ ’
5__ —— Gage
Reconstruction
95% CI on reconstruction
1900 1920 1940 1960 1980 2000

Year

« Gray band = 95% confidence interval around
reconstruction

* Indicicates 95% probability that gaged flow falls within
the gray band



Annual Flow (MAF)

Using RMSE to generate confidence intervals

Colorado R. at Lees Ferry
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* In applying these confidence intervals to the full
reconstruction, we assume that the RMSE Is representative
of uncertainty throughout the reconstruction



Application of model uncertainty: using RMSE-
derived confidence interval in drought analysis

Lees Ferry Reconstruction, 1536-1997
5-Year Running Mean
Assessing the 2000-2004 drought in a multi-century context

—_— A

Flow (% of nhormal)

e R D

; Lowest C?bserved

50
1 550 1 600 1 650 1 ?00 1 ?50 1 800 1 850 1 900 1 950 2000
Ending Year of 5-yr Running Mean

Data analysis: Dave Meko



Sensitivity to available predictors

« How sensitive is the reconstruction to the specific
predictor chronologies in the pool and in the model?

South Platte - First model

South Platte - Alternate model



Annual Flow, AF

Sensitivity to available predictors - alternate models

South Platte at South Platte, First Model and
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 The two models correlate at r = 0.84 over their overlap period,
1634-2002

* In this case, completely independent sets of tree-ring data
resulted in very similar reconstructions



Sensitivity to other choices made in modeling
process

Lees Ferry reconstructions from 9 different models that vary according to
chronology persistence, pool of predictors, model choice

Analysis from D. Meko

Lees Ferry Reconstructions, 20-yr moving averages
20 .
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Annual Flow, MAF

Uncertainty related to extreme values

Colorado at Lees Ferry, Reconstructed and
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» Extremes of reconstructed flow not experienced in the calibration
period often reflect tree-ring variations beyond the range of variations in

the calibration period.

» These estimates may be more uncertain than implied by the RMSE

2000



Uncertainty in perspective

« RMSE is probably a reasonable measure of the magnitude of
overall uncertainty in the reconstructions, but it should be
recognized that it does not reflect all sources of uncertainty

* There Is usually no one reconstruction that is the “right” one--
though some may be better than others (as indicated by RE)

e A reconstruction is a plausible estimate of past streamflows



Part 4.

Reconstructions for the West, Colorado, and
the San Juans
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“*One-stop shopping” for the western US
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Western Water Assessment

Research Publications Resources

Tree-Ring Reconstructions of Streamflow for Water
Management in the West
http://wwa.colorado.edu/resources/paleo/data.html

links to:

» TreeFlow for Colorado

 TreeFlow for California

« Woodhouse et al 2006 - Upper Colorado
 LTRR/Salt River Project - Lower Colorado

« NOAA World Data Center for Paleoclimatology




CO I O rad O Tr ee FI O W ©) TreeFlow - Streamflow Reconstructions - Mozilla Firefox

File Edit Wiew Go Bookmarks Tools  Help
WEb S Ite <Z| - LL;’ - @1 |:| @ |~3 http: j v, ncde. noaa . govpalec/streamflowreconstructions, hitml V| @ G0 ||Q'

|| Customize Links | | Free Hokmail | | Windows Media | | Windows

NOAA Satellite and Information Service V\-’V National Climatic ¢

l O TreeFlow -- Home Page - Mozilla Firefox Data Center §
Ele Edb Wien G0 Dockmeke Took  Help National Enviranmental Satellite, Data, and Information Service (NESDIS) y 5. pepartment of Commerce X

@-op- g @ [ & hitp:fjmm.nede noaa.govfpalesfstreamfiomjindex il NUAA Paleuc[imatu[ugy | | [ Search NCDC l

|| Customize Links || Free Hotmall || Windows Media | | windows
Home « Research « Data » Education » What's New « Features - Perspectives « Site Map » Mirrors

Data Center
National Environmental Satellite, Data, and Information Service (NESDIS) 5. pepartment of Commerce

9 NOAA Satellite and Information Service VVV National Climati

NOAA Paleoclimatology \ | (Searchnicne
rrome Research Daie Fduaon  Wihars NewFeaures Perpecives Steen Miners TreeFlow Home - Background - Chronologies - Reconstructions - Case Study - Resources
TreeFlow

Tree-ring reconstructions of streamflow for Colorado

Streamflow Reconstructions

Background Info A tree-ring reconstruction of strearmflow is developed by calibrating several tree-ring chronologies with a gage record to
extend that record into the past. We have developed ower 20 reconstructions of annual streamflow, in the South Platte,
Arkansas, Upper Colorado, and Rio Grande basins. Updates September 2005: Seven new reconstructions have been
generated, and another has been updated to 2002, See details below.

Tree-Ring Chronologies
Streamflow Reconstructions (updated October 2005)
Blue River Case Study

GdditicnelResources To access the reconstruction data: click on a gage name below OR go to Gage Map
Photo Gallery

Annual tree growth at lower elevations in Colorado is closely correlated wi
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Ruoaring Fork River at Glenwood Springs

Dr. Connie Woodhouse, Paleoclimatology Branch, MOAA Mational Climatic Data Center, connie wandhouse@@noaa. gov, 303 .
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Jeff Lukas, Institute of Arctic and Alpine Research (INSTAAR), University of Colorada, Jukas@colorado. edu D Rio Gra“{le Basi n ArkansaS Ri"!’Er at Caﬁtlrl Clt'\ll'
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LTRR/Salt River Project - Lower Colorado Basin

Synchronous Extreme
Streamflows, Upper Colorado
and Salt-Verde Basins

e Salt + Verde + Tonto

* Gila at head of Safford Valley
» Salt + Tonto

* Verde

A Collaborative Project between The
University of Arizona's
Laboratory of Tree-Ring Research &
The Salt River Project

, see full report

LTRR / SRP PROJECT MAP
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Image courtesy of K. Hirschboeck and D. Meko (U. AZ)


http://fpnew.ccit.arizona.edu/kkh/srp.htm
http://fpnew.ccit.arizona.edu/kkh/srp.htm

Woodhouse et al. 2006 Upper Colorado River Basin

NOAA Satellite and Information Service V\-’V National Climati
National Environmental Satellite, Data, and Information Service (NESDIS) y ¢ pegar ,,.,E,?,tﬂ rc‘?,r,]:ﬁ ¢
WDC for Paleoclimatology
Home - Research - Data - Education - What's New - Features - Perspectives - Site Map - Mirrors
Updated Streamflow Reconstructions for the Upper
Colorado River Basin

Updated Streamflow Reconstructions for the Upper Colorado
River Basin

Water Resources Research

Yol 42, WOs415, 11 May 2006.

Connie A. Woodhouse', Stephen T. Gray?, David M. Meko®

| ' NOAA National Climatic Data Center, Boulder, CO
.S, Geological Survey, Desert Laboratory, Tucson, AZ
% Lahoratory of Tree-Ring Research, University of Arizona, Tucson AZ

Satellite image of Lake Powell, Utah on the Colorado River above Lee's
Ferry, Arizona, USGS Landsat Photo.

ABSTRACT:

Updated proxy reconstructions of water year (October-Septermber) streamflow for four key gauges in the Upper
Colorado River Basin were generated using an expanded tree ring network and longer calibration records than in
previous efforts. Reconstructed gauges include the Green River at Green River, Utah; Colorado near Cisco, Utah;
San Juan near Bluff, Utah; and Colorado at Lees Ferry, Arizona. The reconstructions explain 72-81% of the
vatiance in the gauge records, and results are robust across several reconstruction approaches. Time series
plots as well as results of cross-spectral analysis indicate strong spatial coherence in runoff variations across
the subbasins, The Lees Ferry reconstruction suggests a higher long-term rmean than previous reconstructions
but strongly supports earlier findings that Colorado River allocations were based on one of the wettest periods in
the past 5 centuries and that droughts more severe than any 20th to 21st century event occurred in the past.

Download data from the WDC Paleo archive:

Upper Colorado Streamflow Reconstructions in Text or Microsoft Excel format.
Supplermentary Data 1. Chronology data and metadata

Supplementary Data 2. Regression equations and coefficients, PC data
Supplermentary Data 3. Loadings from PCA on chronologies

To read or view the full study, please visit the AGU website.
It was published in Water Resources Research, Vol 42, 05415, 11 May 2006.

Colorado R. at Glenwood Spgs, CO
Colorado R. nr Cisco, UT

Colorado R, at Lees Ferry, AZ
Green R. nr Green River, WY
Green R. at Green River, UT
Gunnison R. at Crystal Reservoir
Gunnison R. nr Grand Junction, CO
San Juan R. nr Archuleta, NM

San Juan R. nr Bluff, UT

Dolores R. nr Cisco, UT

http://www.ncdc.noaa.gov/paleo/pubs/woodhouse2006/woodhouse2006.html



NOAA — National Climatic Data Center
World Data Center for Paleoclimatology

Mational Environmental Satellite, Data, and Information Service (NESDIS) U.g m.m;,,r,e,itﬂ :-:f,.:!tf:[. X

@ MOAA Satellite and Information Service \,VV National Climatic &~

WDC for Paleoclimatology | Search NCDC |

Home « Research - Data - Education - What's New - Features - Perspectives - Site Map - Mirrars

Climate Reconstructions

The MOAA Paleoclimatology Program archives

recanstructions of past climatic conditions derived Please Cite Data Contributors!
fram paleoclimate proxies, in addition to the

Program's large holdings of primary paleoclimatic proxy data. Included are reconstructions of past temperature,
precipitation, vegetation, streamflow, sea suface ternperature, and other climatic ar climate-dependent
canditions.

Reconstructions: Air Temperature Hydroclimate Circulation SS5T Other Search by Author

Streamflow

Asia
Selenge River, Mongolia Arearnflow, 360 Years, Davi et al. 200G,

Australia, New Fealand
Burdekin River, Austrllia Streamflow, 350 Years, Isdale et al. 1998,

Horth America
Colorado River and tributaries flow, Text or Microsoft Excel format, 500 Years, Stockton and Jacoby 1976,

Upper Colorado River and tributaries flow, Text or Microsoft Excel format, 500 Years, Woodhouse et al. 2006.

Sacrarmento River, California flow reconstruction, 1109 Years, Meko et al. 2001.
Yellowstone River, kMontana flow reconstruction, 270 Years, Graumlich et al. 2003,
TreeFlow Project - Tree Ring Reconstructions of Strearmflow for Colorado

Clear Creek Colorado Annual Flow Reconstruction, 300 Years, Woodhouse 2000,
Iiddle Boulder Creek Colorado Flow Reconstruction, 280 ¥ears, Woodhouse 2001,
White River Arkansas flow reconstruction, 953 Years, Cleaveland 2000.

White River Arkansas flow reconstruction, 280 Years, Cleaveland and Stahle 1933

http://www.ncdc.noaa.gov/paleo/recons.html

Available for Western US:

e Other Streamflow
e Summer PDSI

Summer Temperature

Also:

e Circulation Indices (ENSO,
PDO, AMO)

e Sea Surface Temps



Reconstructions @
In Colorado and the
upper Colorado
River basin

e Over 30
reconstructions,
representing
nearly all of the
streamflow
leaving Colorado

e Developed by
Woodhouse and
others 2001-2006
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Dolores near Cisco - calibration

2000 - Qbserved

1750 - —— Reconstructed

= YLy
- VWA

250

0 I I I I I I I I I
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

KA

Annual flow

Observed (natural flow) record from USBR
Calibration from 1906-1995

R2 =0.69

1977: observed 195 KAF, reconstructed 63 KAF
2002: observed 269 KAF



Annual flow (KAF)

Dolores near Cisco - reconstruction 1569-1999
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« Annual flows in green, 5-yr running mean in black

» 7 years w/ reconstructed flows below 1977 (63 KAF)

e 1622-1626: 5-yr running mean 368 KAF

e 1959-1963: 5-yr mean 509 KAF observed, 546 KAF reconstructed

2000-2004: 5-yr mean 454 KAF observed



San Juan at Archuleta - calibration
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Observed (natural flow) record from USBR
Calibration from 1906-1995

R2 =0.72

1977: observed 249 KAF, reconstructed 70 KAF
2002: observed -23 KAF (?)



San Juan at Archuleta - reconstruction 1569-1999
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Annual flows in green, 5-yr running mean in black

10 years w/ reconstructed flows below 1977 (70 KAF)

1879-1883: 5-yr running mean 423 KAF

1959-1963: 5-yr mean 840 KAF observed, 876 KAF reconstructed
2000-2004: 5-yr mean 459 KAF observed



Rio Grande near Del Norte - calibration
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Observed (undepleted flow) record from CO State Engineer
Calibration from 1890-1997

R2=0.76; RE=0.72

1902: observed 255 KAF, reconstructed 152 KAF

2002: observed 164 KAF



Rio Grande near Del Norte - reconstruction
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Annual flows in green, 5-yr running mean in black

5 years w/ reconstructed flows below 1902 (152 KAF)

1879-1883: 5-yr running mean 339 KAF

1959-1963: 5-yr mean 462 KAF observed, 525 KAF reconstructed



Good distribution of tree-
ring chronologies across
the San Juans

Potential to reconstruct any
gage with >50 years of
record

Preliminary reconstruction
of Piedra at Arboles shows
smaller basins can be well-
estimated

Could include 2002 In
calibration of new
reconstructions

Potential future reconstructions for San Juans

Al
WL A LAM I ‘L H
UNAA, £ ATR A AMCG
TN GOU R B PRP
EFU LY PN _
SERMReK MOD
AMTH =AR
{]ﬁ'r'__.""..ll,_'_'-, S;I'I:El _r"’_l".l TE
'l"u_SLI"::. Lf=".r i & ARC A M
[T ADIS e G
£ i Gre
MCP y
F N sl — 2 de
M NI :
£ A\ GVR
SRR bem LTE
fdlian k-
: %[HP




Using “remnant wood” to reconstruct >1000 yrs

Douglas-Fir on
Grand Mesa
dated from 926-
1770




Flow (% of mean)

Reconstruction of Colorado River at Lees Ferry,
AD 762 - 2005
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25-yr running means of reconstructed and observed annual flow of
the Colorado River at Lees Ferry, expressed as percentage of the
1906-2004 observed mean.

From: Meko et al. 2007. Medieval Drought in the Upper Colorado River Basin,
Geophysical Research Letters



Year-by-year details of 1100-1200: (a) flows and
(b) runs below the observed mean
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Part 5:

How the reconstructions can be used In
water management
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Annual streamflow, MAF
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Figure 5. Demands & Supplies: 15% Reduced Flow Hydrology, Current Trends
Scenario (demand = 31,700 AF/year).

Reconstruction data Policy analysis



Using the reconstructions - two degrees of difficulty

* 1) Provide long-term context for the gage record
« can be qualitative or quantitative

e 2) Input into a system model to assess management
scenarios

e requires further processing of the reconstruction data
e leads to more effective communication of risk



1) Providing long-term context for the gage record

Box and whiskers plots can be used to compare the
distributions of flows between the gage and reconstructed
flow records

Lees Ferry gaged and reconstructed flows

Gage, 1906-2003 1490-1998 1550-1599 1845-18594 1600-1645 1900-1849
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Probability density functions (PDFs) show more subtle differences
In the distributions

Lees Ferry gaged and reconstructed flows
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The temporal distribution or sequences of high and low flow
years can also be examined

B Lees Ferry flow years categorized by percentile,

s <20th 1536-1997
e <40th
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- Extreme events are not evenly distributed over time
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Reconstructed Lees Ferry Streamflow, 1536-1997
Drought Duration and Frequency of Drought Events

50 . Here, drought is
20th century only defined as one or
“" more consecutive
40 30 years below the long-
term median.

20 +

30 -

104 ]

.

12348 6 7T 8B 6401

# of events

20

Full Reconstruction
1536-1997 The 20t century

represents only a

10 subset of the
droughts in the full
0 — s reconstruction
1 2 3 4 56 6 7 8 9 10 11 period

Duration (years below median)



A 20-year moving average shows clear decadal-scale variability
The climatological community is currently addressing the
guestion: What drives this variability?

Lees Ferry Streamflow Reconstruction (20-yr moving average), 1490-1997
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% Full

2) Reconstructions as input into models, to assess
management scenarios - specific examples
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Figure 5. Demands & Supplies: 15% Reduced Flow Hydrology, Current Trends
Scenario (demand = 31,700 AF/year).



Denver Water - water supply yield analyses

Challenge:

Denver Water’s Platte and
Colorado Simulation Model
(PACSM) requires daily model
iInput from 450 locations

Solution:
An “analogue year” approach

« Match each year in the
reconstructed flows with one of the
45 model years (1947-1991) with
known hydrology (e.g., 1654 is
matched with 1963), and use that
year’s hydrology.

 Years with more extreme wet/dry
values are scaled accordingly

e Data are assembled as new
seguences of model years

*PACSM is used to simulate the
entire tree-ring period, 1634-2002



Denver Water - water supply yield analyses

% Full

Reservoir contents with 345 KAF demand and progressive drought restrictions
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Two paleo-droughts (1680s, 1840s) deplete contents lower than
1950s design drought



US Bureau of Reclamation - analyses for “Shortage EIS”

Challenges:

1) CRSS model requires
monthly inputs at 29 model
nodes

2) Distrust of extreme
reconstructed flow values, need
to conservatively incorporate
new data

Solutions:

1) Non-parametric disaggregation
scheme for extending annual
reconstructed flows at one site to all
model steps and nodes

2) Non-parametric scheme to
combine the state information (wet-
dry) from the tree-ring data with the
observed flow values, thus creating
sequences (e.g. sustained droughts)
not seen in the observed record



US Bureau of Reclamation - analyses for “Shortage EIS”

Glen Canyon 10-Year Release Volume
No Action Alternative, Years 2008-2060
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Courtesy of Jim Prairie, USBR



City of Boulder - water supply yield analyses

Challenges:

1) Incorporate reconstruction
uncertainty into modeling

2) Represent potential effects of
climate change on hydrology

3) Represent uncertainty in
future demand

Solutions:

1) Noise added to reconstruction to
represent uncertainty; multiple
model runs

2) Reconstructed flows scaled up or
down to create different climate
change scenarios (3 scenarios)

3) Different demand scenarios (4)



City of Boulder - water supply yield analyses

15% reduced
flow scenario;
current trend
In demand
scenario;
stepped
drought
restrictions to
reduce
demand

Shortages
modeled
during 3
paleo-
droughts
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10.000 1 Number of years with shortage = 18
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Figure 5. Demands & Supplies: 15% Reduced Flow Hyvdrology, Current Trends
Scenario (demand = 31,700 AF/vear).

From Hydrosphere Resource Consultants: Report to the City of Boulder, Sept. 2003



Annual streamflow, MAF

Part 6:

What is the relevance of the reconstructions
In light of climate change?
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Annual Temperature (F)

Observed trends In
the Upper Colorado
River Basin (UCRB)

Upper Colorado Basin Mean Annual Temperature.
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Water Year Precipitation (inches)

Upper Colorado River Water Year Precipitation.
October through September. Units: Inches.
Data from PRISM. Blue: annual. Red: 11-yr mean.
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Data from PRISM: 1895-2005.
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Annual temperatures
have risen over the past
110 years, but clear
trends in precipitation
are not evident



The change in temperature is having an impact on regional
snowpack, even without changes in precipitation.

Shift from Snowfall to Rainfall

LESS RAIN, MORE SNOW

Trends in ratio of winter (Nov-Mar) snowfall water equivalent
(SFE) to total winter precipitation (rain plus snow) for the
period WY 1949-2004. Circles represent significant (p<0.05)
trends, squares represent less significant trends.

Knowles et al. 2005, AGU




Projections of Future
Climate in the upper
Colorado River Basin

Observed and projected
conditions for the Colorado
River Basin above Lees Ferry,
using 11 models and 2
scenarios downscaled to the
Colorado River basin (upper
two panels) and used to drive
the VIC macroscale hydrology
model (lower panel)

- temperature increase
consistent among models

- no model consensus on
precipitation

- large spread in runoff
projections but mostly down

9-year running means expressed as departures
from 1950-1999 means
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Climate change will likely impact future hydrology

* Precipitation change uncertain (increase? decrease?)

« Temperature increase very likely (already being observed in
most locations)

— Increase Iin evapotranspiration

— decrease in soil moisture

— decreased snowpack accumulation (more precip. falls as rain)
— Increased sublimation from snowpack

— earlier meltout of snowpack

» Likely effects on hydrology: lower flows, earlier peak flows

« Precipitation change could either (partly) mitigate these
effects or make things worse



So how can the past (tree-ring data) be made
relevant to planning for future climate/nhydrology?

* Natural modes of variability will continue to operate alongside
human-forced warming trends

* Because of their length, tree-ring data are best-suited to
assess and understand multidecadal scale variability and its

causSes

e The greater variability seen in the paleohydrologic records may
be a useful analogue for future variability

 The most likely changes in future climate (e.g. moderate
warming) can be integrated with a tree-ring flow reconstruction
In hydrologic modeling to create plausible future scenarios for
water management



Wrapping things up...




The take-home messages

1) Tree-ring reconstructions are useful in that they provide
more “hydrologic experience” without the pain

2) Tree growth in this region is particularly sensitive to
variations in moisture availability, and thus streamflow

3) The methods to develop tree-ring chronologies and
streamflow reconstructions are designed to capture and
enhance this moisture signal

4) A reconstruction is a best-estimate based on the
relationship between tree-growth and gaged flows;
there is always uncertainty in the reconstructed flows



The take-home messages

5) There are several annual flow reconstructions available
for the San Juan region, and more could be readily
generated

6) The reconstructions (almost) always show drought
events more severe/sustained than those in the gaged
record

7) There are different levels of complexity in applying the
reconstructions to water management; what is required
to effectively communicate risk?

8) Climate change will impact future hydrology, but past
experience will still be relevant
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Paleoflow Users Group
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Integration of tree-ring flow reconstruction with

climate change scenarios - City of Boulder (with CU
and Stratus Consulting)

Monthly temperatures, monthly precipitation, and gaged streamflow from
iInstrumental record (1953-2002) are resampled to match the paleo
streamflows for 1566-2002, with corresponding monthly temperature and
precipitation

Effectively disaggregates the annual paleo streamflows into estimated
climatic variables (monthly precipitation and temperature) so that those
variables can be manipulated independently

Then the simulated monthly temperature and precipitation are input into a

snowmelt-runoff (SRM) and water-balance (WATBAL) model to produce
modeled Boulder Creek flows

Then changes in temperature and precipitation forecasted from climate
models will be combined with the paleodata to produce simulations of past
hydrology under plausible future climate conditions

Allows water managers to assess the joint risks of climate variability and
climate change

Southwest Hydrology, Jan/Feb 2007
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