From Tree to Trace: How tree-ring reconstructions of streamflow are generated

Technical Workshop for Water Resource Managers
Connie Woodhouse and Jeff Lukas
NOAA-NCDC Paleoclimatology Branch and INSTAAR Dendrochronology Lab
Welcome and Logistics

Plan for day
• series of informal presentations and demos
• drought planning and paleo
• several presentations from participants
• discussion

Morning and afternoon breaks

Lunch outside, take-out from Pei Wei

Parking in the garage

Introductions
Outline of workshop

- Introduction to dendrochronology, history, fundamentals
- Annual rings and crossdating [demo]
- How climate information is recorded in tree rings
- Site selection: maximizing the climate information in tree rings

BREAK

- Field and lab techniques
- Building a chronology from measured series
- The International Tree-Ring Data Bank [demo]

LUNCH

- Generating streamflow reconstructions from tree-ring data
 - Data selection and evaluation
 - Model selection, calibration and validation
 - Source of uncertainty in the reconstruction

BREAK

- Analyses of reconstructions; the 20th/21st centuries in perspective
- Relevance to a changing climate?
- Drought planning and paleoclimatology
- Applications to water resource management, open discussion
Acknowledgements

Workshop assistance:

ISPE – Gregg Garfin, Teresa Woolfenden

LTRR - Katie Hirschboeck, Dave Meko, Scott St. George, Erika Wise, Ellis Margolis, Rex Adams

Partners and Collaborators:

Funding:

NOAA Office of Climate Programs: Western Water Assessment and Climate Change Data and Detection (GC02-046); Denver Water; USGS
What is Paleoclimatology?

Paleoclimatology reveals what has actually happened
Jonathan Overpeck
Key attributes of tree rings as a climate proxy

- Annual resolution
- Continuous records (100-10,000 yrs)
- High sensitivity and fidelity to climate variability
- Widespread distribution
Dendrochronology:
the science that deals with the dating and study of annual growth layers in wood

Fritts 1976
Dendrochronology

Dendroarchaeology
Dendroecology
Dendrogeomorphology
etc.

Dendroclimatolology
The science that uses tree rings to study present climate and reconstruct past climate

Dendrohydrology
The science that uses tree rings to study changes in river flow, surface runoff, and lake levels
Key people and advances in dendrochronology, dendroclimatology, and dendrohydrology

• A. E. Douglass - 1900s - 1950s
 – “father” of modern tree-ring science
 – established crossdating as a rigorous methodology
 – used ring-width as proxy for climate variability
Key people and advances in dendrochronology, dendroclimatology, and dendrohydrology

• Edmund Schulman - 1930s - 1950s
 – extensive sampling across West for climate sensitivity
 – systematic examination of climate-growth relationships
 – discovered great age of bristlecone pine and other species
 – first dendrohydrologic studies of Colorado River basin
Key people and advances in dendrochronology, dendroclimatology, and dendrohydrology

• Hal Fritts - 1960s - present
 – physiological basis of ring width sensitivity to climate
 – modern statistical procedures for climate reconstruction
 – reconstruction of large-scale climate patterns
 – *Tree Rings and Climate* (1976)
Key people and advances in dendrochronology, dendroclimatology, and dendrohydrology

- **Ed Cook - 1980s - present**
 - program for chronology compilation (ARSTAN)
 - gridded drought (PDSI) reconstructions for N. America

- **Dave Meko - 1980s - present**
 - further development of statistical procedures for climate and streamflow reconstructions
 - streamflow reconstructions of Gila, Sacramento, Colorado, etc.
Principles of Dendrochronology

The Uniformitarian Principle

Principle of Limiting Factors

Principle of Crossdating

Principle of Site Selection

Principle of Replication
The Uniformitarian Principle

“The present is the key to the past”

- That is, the processes that were operating at some time in the past (e.g., those that govern the relationship between climate and tree growth) are the same as those operating today

- First proposed by Lyell in 1830s to explain origin of geologic features, it underpins all earth sciences, including dendrochronology
Annual Rings and the Principle of Crossdating
How annual growth rings form

- In temperate climates, one distinct growing season per year, so one growth ring = one *annual ring*

- New wood cells form in the cambium, underneath the bark

- *Earlywood* has large, thin-walled cells and appears light

- Towards the end of the growing season, cells are smaller and thick walled and appear darker: *latewood*

- Earlywood + latewood = growth ring

- *Note that rings have varying widths*
In regions where climate is the main control on growth, variations in ring width are common among trees.

Since each tree in an area is experiencing the same climate, the pattern of wide and narrow rings is often *highly replicated* between trees.
Principle of Crossdating:

Matching the patterns in ring widths or other ring characteristics (such as frost rings) among several tree-ring series allows the identification of the exact year in which each tree ring was formed.

Portions of cores from 2 Douglas-fir trees at same site (Eldorado Canyon, CO)
Regional climate patterns = regional crossdating

The 1748, 1750, & 1752 Ring-Width Signature in the Southwest

From Kipfmueller and Swetnam 2001

Image courtesy of K. Kipfmueller (U. MN) and T. Swetnam (U. AZ)
Crossdating allows the extension of tree-ring records back in time using living and dead wood.
Principle of Limiting Factors

- A biological process (e.g., tree growth) cannot proceed faster than is allowed by its most limiting factor
Climate is typically the main limiting factor on tree growth in the West

- At high elevations, growth is typically limited by summer warmth and length of the growing season

- At lower elevations, growth is typically limited by moisture availability
Climate is not the only *influence* on growth

Climate (precipitation, temperature, humidity, winds, etc.)

Site environment (soils, slope, aspect, water table)

Competition, Injury, Insects, Fire

Tree Growth

Within-tree processes
The main goal is to increase Signal:Noise ratio

Climate (precipitation, temperature, humidity, winds, etc.)

Site environment (soils, slope, aspect, water table)

Tree Growth

Competition, Injury, Insects, Fire

Within-tree processes
Moisture sensitivity

- “Moisture-sensitive” trees are ones whose year-to-year ring-width variability mainly reflects changes in moisture availability.

- These changes are driven mainly by precipitation.

- Temperature, humidity, and wind play lesser roles, by modifying evapotranspiration (moisture losses from soil and directly from tree).
Example of moisture signal as recorded by a single tree - western Colorado

- Here, the “raw” ring widths from one tree are closely correlated to the annual basin precipitation ($r = 0.69$).
- Our job is to capture and enhance the moisture signal, and reduce noise, through careful sampling and data processing.
Example of moisture signal as recorded by a single tree - central Arizona

A TREE-RING CORE FROM THE SALT RIVER BASIN showing ring-width variations in the 1900s

1899-1904 dry “signature” pattern

1905–1908 1914–1920
two wet episodes

1899 & 1902 = narrow rings

Even in a single tree, the record of extreme wet and dry streamflow episodes is evident.

1900 & 1904 = missing rings

1950’s DROUGHT

1952 (one wet year)

1950 & 1951 1953–1956 series of narrow rings

Image courtesy of K. Hirschboeck and D. Meko (U. AZ)
This moisture signal can be a proxy for multiple moisture-related variables:

- Annual or seasonal precipitation
- Drought indices (e.g., PDSI)
- Snow-water equivalent (SWE)
- Annual streamflow

These variables are closely correlated in this region, and trees whose ring widths are a good proxy for one tend to be good proxies for all of them
Ring-width and streamflow - an indirect but robust relationship

- Like ring width, streamflow integrates the effects of precipitation and evapotranspiration, as mediated by the soil
Principle of Site Selection

• Useful sites can be identified and selected based on criteria that will produce tree-ring series sensitive to the environmental variable being examined.

• Criteria for useful sites:

 – *species known to be moisture-sensitive*

 – *old trees (= long records)*

 – *lower portion of species’ elevational range*

 – *site environment that induces moisture stress*
Principal moisture-sensitive species - CO, UT, AZ, NM

Douglas-fir
500-800 years

Pinyon Pine
500-800 years

Ponderosa Pine
300-600 years
Climate responses by species - western US

Limber Pine
Douglas-fir
Ponderosa
Pinyon

from Fritts 1976
Old tree characteristics: flat or spike tops, heavy and gnarled limbs, thick bark, large size*
Stressful sites produce ring series with greater sensitivity (higher Signal:Noise ratio)

from Fritts 1976
Characteristics of stressful sites

- Uplands, not near stream
 - well above water table

- Thin, rocky soils
 - low retention of soil moisture

- Steep slopes
 - low retention of soil moisture

- South- or west- facing
 - greater heating, more stress

- Low tree density
 - less noise from competition, fire, insects
Site selection to enhance the moisture signal

- Is this a good site? Why or why not?

- What about this site?
Site selection to enhance the moisture signal
Building a Tree-Ring Chronology,
Part I
Field and Laboratory Techniques
Principle of Replication

- The environmental signal being investigated can be maximized, and the amount of "noise" minimized, by sampling more than one radius per tree and multiple trees per site.
- The end-product of this sampling replication is the site **ring-width chronology**.
- Chronologies are the “building blocks” of streamflow reconstructions.
Steps in Building a Tree-Ring Chronology

Multiple samples at a site

Preparing samples
Crossdating
Measuring
Detrending

Series (of ring-width indices)

Quality Control
Compilation

Chronology (weighted average of all series)
Sampling to develop a site chronology

- Sample 10-30 trees at a site, same species

- Select old-appearing trees

- Goal: maximize the sample depth throughout the chronology (300-800+ years)
 - chronology quality is a function of sample depth
 - depth always declines going back in time, since oldest trees are rarer
Sampling living trees

- Increment borer collects core 4-5mm in diameter, up to 20” long
- Causes minimal injury to the tree

Image courtesy of K. Hirschboeck (U. AZ)
Sampling dead trees ("remnant" wood)

• Increment borers can also be used to sample remnant wood (stumps, snags, logs)

• But it’s often better to saw cross-sections
Sampling to develop a site chronology

• Collect two cores (radii) from each tree, extending to the pith

• The two radii are from opposite sides of the tree
 – average out within-tree ring-width variability
 – facilitate identification of absent and micro rings

Schematic of coring for typical tree
Preparing the cores

- Cores are left to air dry for at least a few days, then glued to wooden core mounts

- Cores are sanded with a belt sander, then hand-sanded to 1200-grit

- Individual cells (tracheids) must be clearly visible

NO - can’t see cells

OK - ready to crossdate
Cross-dating the cores

- Crossdating cores from living trees is usually straightforward, since the outside date is known.

- Main challenge is inferring absent rings from pattern (mis)matches with other trees:
 - Frequency of absent rings ranges from 0 - 4% per site.
 - Cores with up to 10% absent rings can be crossdated.

EGL 261

1977 present but very narrow

EGL 042

1977 inferred to be absent
Measuring the cores

- Computer-assisted measurement system
 - turning knob advances the stage under the microscope
 - linear encoder captures position of core to nearest 0.001mm (1 micron)
 - actual precision is ~5 microns

- Measurement path is parallel to the rows of cells (and perpendicular to the ring boundaries)
Measuring the cores

- Computer-assisted measurement system
 - turning knob advances the stage under the microscope
 - linear encoder captures position of core to nearest 0.001mm (1 micron)
 - actual precision is ~5 microns

- Measurement path is parallel to the rows of cells (and perpendicular to the ring boundaries)

Sources of uncertainty
- measurement error
- ring-widths on core may not be representative of tree
Assessing the quality control of dated/measured series

- The program COFECHA runs correlations for each series with a master chronology derived from the other series.

- Easy to identify the rare series that has been mis-dated or mis-measured or simply does not follow the common site signal.

Typical COFECHA output, from VBU:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>1850</th>
<th>1875</th>
<th>1900</th>
<th>1925</th>
<th>1950</th>
<th>1975</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.89</td>
<td>.82</td>
<td>.79</td>
<td>.86</td>
<td>.83</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.82</td>
<td>.69</td>
<td>.67</td>
<td>.78</td>
<td>.73</td>
<td>.77</td>
</tr>
<tr>
<td>3</td>
<td>.80</td>
<td>.83</td>
<td>.75</td>
<td>.82</td>
<td>.79</td>
<td>.80</td>
</tr>
<tr>
<td>4</td>
<td>.81</td>
<td>.72</td>
<td>.78</td>
<td>.85</td>
<td>.86</td>
<td>.87</td>
</tr>
<tr>
<td>5</td>
<td>.85</td>
<td>.80</td>
<td>.78</td>
<td>.85</td>
<td>.85</td>
<td>.87</td>
</tr>
<tr>
<td>6</td>
<td>.87</td>
<td>.85</td>
<td>.83</td>
<td>.84</td>
<td>.81</td>
<td>.83</td>
</tr>
</tbody>
</table>
Using COFECHA for quality control

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>rpr051</td>
<td>1849 1920</td>
<td>.68</td>
<td>.78</td>
<td>.87</td>
<td>.88</td>
<td>.91</td>
<td>.92</td>
<td>.90</td>
<td>.89</td>
<td>.92</td>
<td>.90</td>
<td>.85</td>
<td>.85</td>
<td>.92</td>
<td>.90</td>
<td>.89</td>
<td>.90</td>
<td>.92</td>
<td>.92</td>
<td>.90</td>
<td>.89</td>
</tr>
<tr>
<td>2</td>
<td>rpr07</td>
<td>1854 1997</td>
<td>.83</td>
<td>.85</td>
<td>.89</td>
<td>.90</td>
<td>.86</td>
</tr>
<tr>
<td>3</td>
<td>rpr061</td>
<td>1745 1936</td>
<td>.23B</td>
<td>.26B</td>
<td>.26B</td>
<td>.18B</td>
<td>.48</td>
<td>.89</td>
<td>.93</td>
<td>.81</td>
<td>.90</td>
<td>.88</td>
<td>.74</td>
<td>.76</td>
<td>.87</td>
<td>.87</td>
<td>.74</td>
<td>.76</td>
<td>.87</td>
<td>.87</td>
<td>.74</td>
<td>.76</td>
</tr>
<tr>
<td>4</td>
<td>rpr011</td>
<td>1860 1997</td>
<td>.65</td>
<td>.71</td>
<td>.83</td>
<td>.90</td>
<td>.86</td>
<td>.70</td>
<td>.77</td>
<td>.71</td>
<td>.84</td>
<td>.88</td>
<td>.74</td>
<td>.76</td>
<td>.87</td>
<td>.87</td>
<td>.74</td>
<td>.76</td>
<td>.87</td>
<td>.87</td>
<td>.74</td>
<td>.76</td>
</tr>
<tr>
<td>5</td>
<td>rpr092</td>
<td>1864 1997</td>
<td>.70</td>
<td>.77</td>
<td>.71</td>
<td>.84</td>
<td>.88</td>
<td>.74</td>
<td>.76</td>
<td>.87</td>
<td>.87</td>
<td>.87</td>
<td>.74</td>
<td>.76</td>
<td>.87</td>
<td>.87</td>
<td>.74</td>
<td>.76</td>
<td>.87</td>
<td>.87</td>
<td>.74</td>
<td>.76</td>
</tr>
<tr>
<td>6</td>
<td>rpr091</td>
<td>1878 1997</td>
<td>.74</td>
<td>.76</td>
<td>.87</td>
<td>.80</td>
<td>.68</td>
<td>.76</td>
<td>.78</td>
<td>.87</td>
<td>.80</td>
<td>.68</td>
<td>.76</td>
<td>.78</td>
<td>.87</td>
<td>.80</td>
<td>.68</td>
<td>.76</td>
<td>.78</td>
<td>.87</td>
<td>.80</td>
<td>.68</td>
</tr>
<tr>
<td>7</td>
<td>rpr061</td>
<td>1743 1997</td>
<td>.37B</td>
<td>.39B</td>
<td>.65B</td>
<td>.76</td>
<td>.81</td>
<td>.91</td>
<td>.92</td>
<td>.90</td>
<td>.89</td>
<td>.90</td>
<td>.85</td>
<td>.85</td>
<td>.92</td>
<td>.89</td>
<td>.90</td>
<td>.89</td>
<td>.90</td>
<td>.89</td>
<td>.90</td>
<td>.89</td>
</tr>
<tr>
<td>8</td>
<td>rpr081</td>
<td>1871 1997</td>
<td>.74</td>
<td>.76</td>
<td>.87</td>
<td>.80</td>
<td>.68</td>
<td>.76</td>
<td>.78</td>
<td>.87</td>
<td>.80</td>
<td>.68</td>
<td>.76</td>
<td>.78</td>
<td>.87</td>
<td>.80</td>
<td>.68</td>
<td>.76</td>
<td>.78</td>
<td>.87</td>
<td>.80</td>
<td>.68</td>
</tr>
<tr>
<td>9</td>
<td>rpr052</td>
<td>1848 1997</td>
<td>.85</td>
<td>.85</td>
<td>.92</td>
<td>.89</td>
<td>.93</td>
<td>.90</td>
<td>.92</td>
<td>.90</td>
<td>.89</td>
<td>.93</td>
<td>.90</td>
<td>.92</td>
<td>.90</td>
<td>.92</td>
<td>.90</td>
<td>.92</td>
<td>.90</td>
<td>.92</td>
<td>.90</td>
<td>.92</td>
</tr>
<tr>
<td>10</td>
<td>rpr051</td>
<td>1848 1997</td>
<td>.88</td>
<td>.88</td>
<td>.91</td>
<td>.90</td>
<td>.92</td>
<td>.91</td>
<td>.88</td>
<td>.88</td>
<td>.91</td>
<td>.90</td>
<td>.92</td>
<td>.91</td>
<td>.88</td>
<td>.88</td>
<td>.91</td>
<td>.90</td>
<td>.92</td>
<td>.91</td>
<td>.88</td>
<td>.88</td>
</tr>
</tbody>
</table>

rpr061 1745 to 1936 192 years

<table>
<thead>
<tr>
<th>[A] Segment</th>
<th>High</th>
<th>-10</th>
<th>-9</th>
<th>-8</th>
<th>-7</th>
<th>-6</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>+0</th>
<th>+1</th>
<th>+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1745 1794</td>
<td>-2</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>.88*</td>
<td>.14</td>
<td>.23</td>
<td>.12</td>
</tr>
<tr>
<td>1750 1799</td>
<td>-2</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>.05</td>
<td>.10</td>
<td>.06</td>
<td>.45</td>
<td>.09</td>
<td>.86*</td>
<td>.17</td>
<td>.26</td>
<td>.10</td>
<td>.05</td>
</tr>
<tr>
<td>1775 1824</td>
<td>-2</td>
<td>.15</td>
<td>.21</td>
<td>.40</td>
<td>.14</td>
<td>.28</td>
<td>.02</td>
<td>.40</td>
<td>.16</td>
<td>.80*</td>
<td>.27</td>
<td>.26</td>
<td>.10</td>
<td>.18</td>
</tr>
<tr>
<td>1800 1849</td>
<td>-1</td>
<td>.06</td>
<td>.03</td>
<td>.22</td>
<td>.41</td>
<td>.15</td>
<td>.17</td>
<td>.01</td>
<td>.08</td>
<td>.10</td>
<td>.65*</td>
<td>.18</td>
<td>.14</td>
<td>.35</td>
</tr>
</tbody>
</table>
Building a Tree-Ring Chronology

Part II

Compilation of Measured Tree-Ring Series
Steps in Building a Tree-Ring Chronology

Multiple samples at a site

Preparing samples
Crossdating
Measuring
Detrending

Series (of ring-width indices)

Quality Control
Compilation

Chronology (weighted average of all series)
Detrending the measured series

- Ring-width series typically have a declining trend with time
- Function of tree geometry, not aging *per se*
- These are low-frequency noise (i.e. non-climatic)

- Raw ring series are detrended with straight line, exponential curve, or spline
- these standardized curves are compiled into the site chronology
Detrending the measured series

Raw ring width, two Cal-Wood ponderosa pines

Detrended ring width, two Cal-Wood ponderosa pines
Coherence of signal among series

All 30 VBU series (detrended)

Signal:Noise = ~12:1
Sources of uncertainty

- choice of function(s) for detrending can affect final chronology (figure above)
- detrending removes the variation of periods equal to or longer than the series, including possible low frequency climate information
Persistence in tree growth from year to year

• The climate in a given year (t) influences growth in that year, but can also influence growth in succeeding years (t+1, t+k) through storage of sugars and growth of needles.

• Climate in year t is also statistically correlated with growth in previous years (t-1, t-k) because of this persistence.

• This persistence is considered to be biological, but can match the degree of persistence in annual flow series.
Persistence in the chronology can be retained or removed (prewhitening)

- **Standard chronology**: persistence in the series is retained
- **Residual chronology**: low order persistence is removed from each series before the chronology is compiled (also called a prewhitened chronology)

Lag 1 $r = 0.356$
Van Bibber Update (ponderosa)
Persistence in the chronology can be retained or removed (prewhitening)

- **Standard chronology**: persistence in the series is retained
- **Residual chronology**: low order persistence is removed from each series before the chronology is compiled (also called a prewhitened chronology)

Lag 1 $r = 0.356$

Source of uncertainty
- Which treatment is “correct”?
• The detrended and prewhitened (or not) series are averaged to create a site chronology, using a robust biweight mean, which reduces the effect of outliers.

• In addition, since the sample size changes over time, the chronology variance is stabilized. This adjustment is typically based on the sample size information and average correlation between all series.
The Expressed Population Signal (EPS) is a measure of the percent common signal in the chronology. EPS should be close to 1.0. A threshold of 0.85 is commonly used.
Data selection and evaluation

Tree-ring data: Sources for chronologies

International Tree-Ring Data Bank (ITRDB)
http://www.ncdc.noaa.gov/paleo/treering.html

- ~2500 chronologies contributed from all over the world
- Can be searched by moisture-sensitive species, location, years
Generating Streamflow Reconstructions from Tree-Ring Data

- Data selection and evaluation
- Reconstruction modeling strategies
- Model calibration and validation
- Assessing skill of the reconstruction
Overview of reconstruction methodology

1. Tree Rings (predictors)
2. Observed Streamflow (predictand)
3. Statistical Calibration: regression
4. Reconstruction Model
5. Model validation
6. Time Series of Reconstructed Streamflow

Based on Meko 2005
Data selection and evaluation

Gage Data

- **Length** – ideally >50 years for robust calibration with tree-ring data
- **Natural/undepleted record** – must be corrected for depletions, diversions, evaporation, etc.

Fraser R. at Winter Park

- Undepleted Flow (from Denver Water)
- USGS Gaged Flow
About natural/undepleted flow records

- Record/estimates/models of depletions and diversions often inadequate, especially in early part of record
- The resulting uncertainties are added to typical errors in gage record (~5-10%)
- Our naïve view was: Flow record is “gold standard”, and where the tree-ring record varies from it, the trees are in error
- More realistic view: Flow record is a representation of actual flow, and discrepancies with tree-ring reconstruction could be due to errors in the flow record
- The reconstruction can only be as good as the flow record on which it is calibrated
Selecting chronologies

- **Moisture sensitive species** - in Colorado and Southwest: Douglas-fir, ponderosa pine, pinyon pine

- **Location** – from a region that is climatically linked to the gage of interest (more on this later)

- **Years** -

 Last year close to present for the longest calibration period possible

 First year as early as possible (>300 years) but in common with a number of chronologies

- **reconstructions are limited by the shortest chronology**
Data selection and evaluation

Physical linkage between tree growth and streamflow – regional climatology

• Chronologies up to ~600km from a gage may be significantly correlated because of a homogeneous climate across the region

• Because weather systems cross watershed divides, chronologies do not have to be in same basin as gage record

• At greater distances, any correlation could be due to teleconnections, which may not be stable over time
Testing time-stability of correlations

• If the relationship between a chronology and a flow record is stable over the past ~100 years, we assume the relationship was stable in previous centuries.

One way to test for the stability of a relationship over time:

• Split-sample correlations test relationship in both halves of the calibration period.

• If either half is not significant at $p < 0.05$ ($r = 0.30$ for 50-year period), then the relationship is considered unstable and the chronology is excluded from pool of possible predictors.
Assessing the shape of the tree ring-flow relationship

- The multiple linear regression model assumes the relationship between predictors (tree-ring data) and predictand (gage data) is linear
- If it is not, a transformation of the gage record is required (a log-transform is commonly used)
After *data selection and evaluation*, a pool of potential predictors is generated.

- Screening all available chronologies reduces the potential pool of predictor chronologies to be used in the modeling process.
- It is important that the pool not be made unnecessarily large. As *n* predictors (chronologies) approaches *n* years in the calibration period, the likelihood of a meaningless predictor entering by chance alone increases.
Reconstruction modeling strategies

- **Individual chronologies** are used as predictors in a stepwise or best subsets regression.

- **The set of chronologies is reduced** through Principal Components Analysis (PCA) and the components (representing modes of variability) are used as predictors in a regression.

These are the most common, but many other approaches are possible (e.g., quantile regression, neural networks, non-parametric methods).
• The differences in final output between the two main strategies may not be very large, particularly if the primary predictor chronologies in the stepwise regression equation are dominant in the first few principal components.
Model validation strategy

Goal: to calibrate model on a set of data, and validate the model on an independent set of data

Split-sample with independent calibration and validation periods

Cross-validation (“leave-one-out”) method
Model calibration: Forward stepwise regression

1) The chronology that explains the most variance in the flow record is selected as the first predictor in the regression.

2) The chronology that explains the most remaining unexplained variance in the flow record is incorporated into the regression (repeat).

3) The process ends when no additional chronology significantly improves the fit of the regression to the flow record.
Model Calibration: Forward Stepwise Regression

- The result is a weighted linear combination of tree-ring chronologies that together estimate a portion of the variance in the gage record

\[y = a_1x_1 + a_2x_2 + \ldots + a_nx_n + b \]

LeesFerry = -2462.05 + 3878.393 DJM + 4258.509 DOU + 1766.509 NPU + 5417.487 PUM – 5588.319 RED + 6416.88 TRG + 4612.965 WIL

- The model is only tentative at this point and must be validated and assessed for skill
Colorado at Lees Ferry - forward stepwise regression

Variance Explained
55%

Annual Flow (MAF)

obs
1 step
Colorado at Lees Ferry - forward stepwise regression

Variance Explained

67%

TRG + WIL

Annual Flow (MAF)

Colorado at Lees Ferry - forward stepwise regression

TRG + WIL + DJM

Variance Explained

72%

Annual Flow (MAF)

obs

3 steps
Colorado at Lees Ferry - forward stepwise regression

Variance Explained

TRG + WIL + DJM + DOU

75%

Annual Flow (MAF)

obs
4 steps
Colorado at Lees Ferry - forward stepwise regression

Variance Explained

TRG + WIL + DJM + DOU + NPU

Variance Explained: 77%

Annual Flow (MAF)

obs
5 steps
Colorado at Lees Ferry - forward stepwise regression

TRG + WIL + DJM + DOU + NPU + RED

Variance Explained

79%

Annual Flow (MAF)

Colorado at Lees Ferry - forward stepwise regression

Variance Explained

81%

TRG + WIL + DJM + DOU + NPU + RED + PUM

Annual Flow (MAF)

obs
7 steps

10 20 30
Model validation and skill assessment

• Are regression assumptions satisfied?
• How does the model validate on data not used to calibrate the model?
• How does the reconstruction compare to the gage record?
Are regression assumptions satisfied?

Analysis of residuals
Residuals are assumed to have:

• NO significant trend with time
• NO significant changes in variance over time
• NO significant autocorrelation
• NO significant correlation with the model estimates
• NO significant correlation with individual predictors
• normal distribution
How does the model validate on data not used to calibrate the model?

Validation statistics – based on withheld data or generated in cross-validation process, compared to observed data

- **Root mean squared error of validation** ($RMSE_v$) - measure of the average error for the validation period; computationally equivalent to standard error of the estimate on the calibration data

- **Reduction of error (RE)** - measure of the skill of a model relative to a “no-knowledge” prediction (here, we use the mean of the gage record for the calibration data); computationally similar to R^2 from the calibration
Calibration and validation statistics for selected reconstruction models

<table>
<thead>
<tr>
<th>Gage</th>
<th>R^2</th>
<th>RE</th>
<th>Std. Err.</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulder Creek at Orodell</td>
<td>0.65</td>
<td>0.6</td>
<td>11396</td>
<td>11713</td>
</tr>
<tr>
<td>Rio Grande at Del Norte</td>
<td>0.76</td>
<td>0.72</td>
<td>113100</td>
<td>117834</td>
</tr>
<tr>
<td>Colorado R at Lees Ferry</td>
<td>0.81</td>
<td>0.76</td>
<td>1983500</td>
<td>2090633</td>
</tr>
<tr>
<td>Gila R. near Solomon</td>
<td>0.59</td>
<td>0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacramento R.</td>
<td>0.81</td>
<td>0.73</td>
<td>0.083*</td>
<td>0.098*</td>
</tr>
</tbody>
</table>

- These statistics will generally be higher for larger basins
- What is a “good” value for R^2? No hard and fast rules, but we hope for more than 0.50, but a very high value could signify model overfit.

* because of log-transform of flow data, these values are in log-units
Prevention of overfitting

An over-fit model is very highly tuned to the calibration period, but doesn’t do as well with data not in the calibration period.
Prevention of overfitting

- For this particular model (Gunnison at Crystal Res.), the validation RE is not improved appreciably with more than 5 predictors (red line)
How does the reconstruction compare to the gage record?

The means are the same, as expected from the linear regression. Also as expected, the standard deviation in the reconstruction is lower than in the gage record, but in this reconstruction, the lowest flow value is slightly underestimated.

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>Recon'd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>15.22</td>
<td>15.22</td>
</tr>
<tr>
<td>Max</td>
<td>25.27</td>
<td>23.91</td>
</tr>
<tr>
<td>Min</td>
<td>5.57</td>
<td>4.71</td>
</tr>
<tr>
<td>StDev</td>
<td>4.32</td>
<td>3.88</td>
</tr>
<tr>
<td>Skew</td>
<td>0.16</td>
<td>-0.14</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-0.58</td>
<td>-0.37</td>
</tr>
<tr>
<td>AC1</td>
<td>0.25</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Subjective assessment of model quality

- Are severe drought years replicated well, or at least correctly classified as drought years?
Subjective assessment of model quality

- Are the lengths and total deficits of multi-year droughts replicated reasonably well?
• When the regression model has been fully evaluated (residuals and validation statistics), then the model is applied to the full period of tree-ring data to generate the reconstruction.
Full Lees Ferry Streamflow reconstruction, 1536-1997
Uncertainty in the reconstructions

- Tree-ring data are imperfect recorders of climate and streamflow, so there will always be uncertainty in the reconstructed values.

- The statistical uncertainty in the reconstruction model can be estimated from the validation errors (RMSE).

- RMSE only summarizes the uncertainty associated with a specific model, which is the result of many choices in the treatment of the data and development of the model.

- The uncertainty associated with these data and modeling choices is not formally quantified but sensitivity analyses can help assess their impacts (e.g., set of chronologies, gage data/years used, modeling approach, treatment of data).
Using RMSE to generate confidence intervals for the model

- $2 \times \text{RMSE}$ approximates the 95% confidence intervals around the reconstruction
- So the CIs should encompass \sim95% of the gage values
Using RMSE to generate confidence intervals

- In applying these confidence intervals to the full reconstruction, we implicitly assume that the RMSE is representative of uncertainty throughout the reconstruction.

- Uniformitarian Principle: the relationship between tree growth and climate does not change significantly over time.
Sensitivity to calibration period

Each of the 60 ensemble members is a model based on a different calibration period.

All members have similar sets of predictors.
Sensitivity to chronologies used as predictors

• How sensitive is the reconstruction to the specific predictor chronologies in the pool and in the model?

South Platte - First model

South Platte - Alternate model
Sensitivity to available predictors - alternate models

The two models correlate at $r = 0.84$ over their overlap period, 1634-2002.

Completely independent sets of tree-ring data can result in very similar reconstructions.
Sensitivity to other choices made in modeling process

Lees Reconstructions from 9 different models that vary according to chronology persistence, pool of predictors, model choice

Lees Ferry Reconstructions, 20-yr moving averages
Extremes of reconstructed flow not experienced in the calibration period often reflect tree-ring variations "beyond the range" of variations in the calibration period.

As such, the estimates may be more uncertain than implied by the RMSE.
Uncertainty in perspective

- RMSE is probably a reasonable measure of the magnitude of overall uncertainty in the reconstructions, but it should be recognized that it does not reflect all sources of uncertainty.

- Other alternative approaches are being generated, such as the noise added approach of Meko et al. 2001*.

- There is usually no one reconstruction that is the “correct” one. A reconstruction is a plausible estimate of past hydroclimatic variability, and ensemble modeling shows that there can be a number of plausible reconstruction series.
Application of model uncertainty: using RMSE-derived confidence intervals in probabilistic drought analysis

Lees Ferry Reconstruction, 1536-1997
5-Year Running Mean
Assessing the 2000-2004 drought in a multi-century context

Data analysis: Dave Meko
Where to find reconstruction data

TreeFlow web site for Colorado

and soon to include:

- other gages in the Upper Colorado River basin
- Lower Colorado River basin gage reconstructions
- California gage reconstructions

Until then

- **UA/Salt River Project** collaboration
- **World Data Center for Paleoclimatology** reconstructions
Colorado TreeFlow web site

Streamflow Reconstructions

A tree-ring reconstruction of streamflow is developed by calibrating several tree-ring chronologies with a gage record to extend that record into the past. We have developed over 20 reconstructions of annual streamflow, in the South Platte, Arkansas, Upper Colorado, and Rio Grande basins. Updates September 2005: Seven new reconstructions have been generated, and another has been updated to 2002. See details below.

To access the reconstruction data: click on a gage name below OR go to Gage Map

- Upper Colorado Basin
 - Fraser River at Winter Park
 - Fraser River at Colorodo River confluence
 - Willow Creek Reservoir Inflow
 - Colorado River above Granby
 - Williams Fork near Lead
 - Blue River at Dillon
 - Blue River above Green Mountain Reservoir
 - Colorado River at Kremmling
 - Rearing Fork River at Glenwood Springs

- Rio Grande Basin
 - Alamosa River above Terrace Reservoir
 - Saukatch Creek near Saukatch
 - Conchas River near Mogollon
 - Rio Grande near Del Norte

- South Platte Basin
 - South Platte River above Chappell Reservoir
 - South Platte River at South Platte
 - North Platte River at South Platte
 - Clear Creek at Golden
 - Boulder Creek at Eldora
 - St. Vrain River at Lyons
 - Big Thompson River at Canyon Mouth
 - Cache la Poudre River at Canyon Mouth

- Arkansas Basin
 - Arkansas River at Canon City

www.ncdc.noaa.gov/paleo/streamflow
Lower Colorado River basin gage reconstructions

Synchronous Extreme Streamflows, Upper Colorado and Salt-Verde Basins

- Salt + Verde + Tonto
- Gila at head of Safford Valley
- Salt + Tonto
- Verde

A Collaborative Project between The University of Arizona's Laboratory of Tree-Ring Research & The Salt River Project

http://fpnew.ccit.arizona.edu/kkh/srp.htm, see full report

Image courtesy of K. Hirschboeck and D. Meko (U. AZ)
Other streamflow reconstructions in the Upper Colorado River basin and elsewhere

Updated Streamflow Reconstructions for the Upper Colorado River Basin

ABSTRACT

Updated proxy reconstructions of water year (October-September) streamflow for four key gauges in the Upper Colorado River Basin were generated using an expanded tree ring network and longer calibration records than in previous efforts. Reconstructed gauges include the Green River at Gypsum Creek, Colorado, near Grand Junction, Colorado, and at Lees Ferry, Arizona. The reconstructions explain 72-81% of the variance in the gauge records, and results are robust across several reconstruction approaches. Time series plots also suggest that the spatial coherence in runoff variations across the subbasins. The Lees Ferry reconstruction suggests a higher long-term mean than previous reconstructions but strongly supports earlier findings that Colorado River allocations were based on one of the wettest periods in the past 5 centuries and that droughts made more severe than any 20th or 21st century event occurred in the past.

Download data from the WDC Paleo archive:

Supplementary Data 1: Chronology data and metadata
Supplementary Data 2: Regression equations and coefficients, PC data
Supplementary Data 3: Loadings from PCA on chronologies

To read or view the full study, please visit the AGU website.

Winnipeg River Basin drought

- 20 new moisture-sensitive chronologies collected in 2004-2005 (green and black symbols)

Image courtesy of S. St. George (CGS, U. AZ)
Analysis of streamflow reconstructions

- How representative is the gage record of the full reconstruction period?
- Examining streamflow characteristics in a long-term context

Relevance to future planning in light of climate change

- How is the climate changing? How can records of the past be useful in this context?

Applications to drought and water resource management

- Drought planning and paleoclimatology (Gregg Garfin)
- Presentations from SRP, USBR, and Manitoba Hydro
- Discussion
Analysis of streamflow reconstructions

Box and whiskers plots can be used to highlight comparisons between the gage and reconstructed flow records.
Probability density functions (PDFs) for gage, reconstruction and subsets of reconstructed flows show the differences in the distribution of values.
The temporal distribution or sequences of high and low flow years can also be examined.
Extreme flow events can also be assessed across different watersheds, here the Upper Colorado and Salt-Verde River basins.
Here, drought is defined as one or more consecutive years below the long-term median.

The 20th century represents only a subset of the droughts in the full reconstruction period.
Decadal-scale variability is evident. A question currently being addressed by the scientific community is: What drives this variability?
Slow variations in oceans temperatures interact with the atmosphere to cause changes in circulation features related to drought and wet periods.

Lees Ferry streamflow reconstruction, 1490-1997

Wavelet power spectrum: Black contour is the 10% significance level. The global wavelet power spectrum: The dashed line is the 10% significance level.

http://atoc.colorado.edu/research/wavelets/
Ocean/atmosphere features operate at a number of time scales; determining their relationship with western US climate is a current topic of research.

Nino3 sea surface temperatures

Atlantic sea surface temperatures (AMO)

North Pacific sea level pressure
Thresholds for low (L) and high (H) flow events are defined by 25th and 75th percentiles of annual flows.

Probability (HL) = 0 / 444 = 0
Probability (LH) = 67 / 444 = 0.004

From Hirschboeck and Meko, SRP report
Upper Colorado and Salt/Verde/Tonto Reconstructed Flows

Probability (HH) = 57 / 444 = 0.128
Probability (LL) = 66 / 444 = 0.149

From Hirschboeck and Meko, SRP report
Climate during concurrent (upper and lower Colorado basins) high or low flow years

500 mb Height Anomalies
(LL and HH years from observed flows)

LL WATER YEARS
- Higher-than-normal pressure over both basins

HH WATER YEARS
- Lower-than-normal pressure over both basins

500 mb Geopotential Height (m) Composite Anomaly, Oct-Sep water year
AMO v PDO

- AMO (warm North Atlantic)
- PDO (warm phase)

Link to Sea Surface Temperature Indices?

From Hirschboeck and Meko, SRP report
How relevant is the past to current and future conditions?

Annual temperatures have risen over the past 110 years, but clear trends in precipitation are not evident.
The change in temperature is having an impact on regional snowpack, even without changes in precipitation.

Trends in ratio of winter (Nov-Mar) snowfall water equivalent (SFE) to total winter precipitation (rain plus snow) for the period WY1949-2004. Circles represent significant (p<0.05) trends, squares represent less significant trends.
Projections of Future Climate in the upper Colorado River Basin

Observed and projected conditions for the Colorado River Basin above Lees Ferry, using 11 models and 2 scenarios downscaled to the Colorado River basin (upper two panels) and used to drive the VIC macroscale hydrology model (lower panel).

Trends in temperature are obvious, but trends in precipitation and runoff are swamped by variability.
Another modeling approach with a different result.

Modeled Lees Ferry annual streamflow, 1895-2050, derived from IPCC 4th Assessment simulations of PDSI. Results from 42 model runs (red line is the average; pink shows the 10%-90% range of individual models). From Hoerling and Eischeid, in prep.
How relevant is the past to planning for climate in the future?

• The climate of the past is unlikely to be replicated in the future, but future scenarios of precipitation do not yet provide useful information for planning and water management.

• The range of hydroclimatic variability is projected to increase, however, as demonstrated by model runs.

• Centuries-long paleoclimatic records provide a broader range of variability from which to assess the characteristics in the instrumental records.

• The variability in the paleohydrologic records may be a useful analogue for future variability.

• These long records are needed to assess and understand multidecadal scale variability and its causes.
An Example from the City of Boulder

• 4 alternative projected future water demands, (population, households and job changes)

• 3 alternative hypothetical hydrologic scenarios (current, -15%, +25%)

Tree-ring flow reconstructions used as input to water system model, upon which these alternatives were imposed, to test system reliability.

Table 2: Boulder’s Drought Response Triggers and Demand Reductions

<table>
<thead>
<tr>
<th>Projected Storage Index (1)</th>
<th>Drought Alert Stage</th>
<th>Total Annual Water Use Reduction Goal</th>
<th>Irrigation Season Water Use Reduction Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater than 0.85</td>
<td>None</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Between 0.85 and 0.7</td>
<td>I</td>
<td>8%</td>
<td>10%</td>
</tr>
<tr>
<td>Between 0.7 and 0.55</td>
<td>II</td>
<td>14%</td>
<td>20%</td>
</tr>
<tr>
<td>Between 0.55 and 0.4</td>
<td>III</td>
<td>22%</td>
<td>30%</td>
</tr>
<tr>
<td>Less than 0.4</td>
<td>IV</td>
<td>40%</td>
<td>55%</td>
</tr>
</tbody>
</table>

From Hydrosphere Resource Consultants: Report to the City of Boulder, Sept. 2003
Drought Planning and Paleoclimatology

Gregg Garfin, ISPE, UAZ
Applications to Water Resource Management

and Open Discussion
How are streamflow reconstructions being used by water providers and other decision makers in drought management and planning?

The concept of research-to-operations has become a common theme, but use can cover a broad range of types (Ray 2004)

• Information is *consulted*; looked up or received in a briefing (awareness)

• After consulted, it is *considered* in management (how to use?)

• Some form of the information is *incorporated* into operations (modeling challenges)

• Information is used in the *communication of risk*, and ultimately may play a part in decision making (who makes the decisions and upon what are they based?)
Presentations

Charlie Ester, Salt River Project

Chris Cutler, US Bureau of Reclamation, Upper Colorado River Basin

Bill Girling, Manitoba Hydro
Other Applications
US Bureau of Reclamation - pursuing an analog-type approach, applying the state information (sequences of dry and wet years) from the tree-ring data

U.S. Bureau of Reclamation uses the Colorado River Simulation System (CRSS) for all long-term operations and planning.

The challenge is to determine the best way to incorporate tree-ring data into the CRSS.

USBR is investigating several approaches, but one is to use the “state” information in the reconstruction to condition and extend the gage record.
A “nearest neighbor” approach is used which categorizes both reconstructed and gage values into classes, then selects the “nearest neighbor” analogue year for each year in the reconstruction from the appropriate category in the gage record. The monthly gage values are then used for that year in the reconstruction (this is a bit simplified).

The CRSS model has 19 inputs (these are not gages). The annual reconstructed values for one or a few gages are disaggregated temporally into monthly values (in the conditioning process), and spatially for the 19 locations needed for model input.
Denver Water collection system
Denver Water - use of analog method to disaggregate reconstructed annual flows

Challenge:
How to use annual reconstructed values for a small number of gages in Denver Water system model?

- Platte and Colorado Simulation Model (PACSM)
- An integrated system that simulates streamflows, reservoir operations, and water supplies in the South Platte and Colorado River basins
- Model input is daily data from 450 locations for 1947-1991

Solution:
An “analogue year” approach

- Match each year in the reconstructed flows with one of the 45 model years with known hydrology (e.g., 1655 is matched with 1963), and use that year’s hydrology.
- Years with more extreme wet/dry values are scaled accordingly
- Data are assembled as new sequences of model years
- PACSM is used to simulate the entire tree-ring period, 1650-2002