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Annual flow, acre-feet

Observed hydrology: enough experience?

Rio Grande near Del Norte, CO
Gaged Annual Flow, 1890-1999
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Annual flow, acre-feet

Observed hydrology: enough experience?

Rio Grande near Del Norte, CO
Gaged Annual Flow, 1890-2007
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2002 — Lowest water year flow Even 110 years is

2002-03 — Lowest 2-year mean flow not enough!

2002-04 — Lowest 3-year mean flow



Tree-ring reconstructions - a surrogate for experience

Rio Grande near Del

Norte, CO

Gaged

record- o

118 f

years < ZOO‘OOE ‘Gage‘c | | | |



Tree-ring reconstructions - a surrogate for experience

By extending the gaged hydrology Rio Grande near Del
by hundreds of years into the Norte, CO
past, the reconstructions provide
a more complete picture of Gaged
hydrologic variability record=
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Tree-ring reconstructions - a surrogate for experience

Benefits:

- Better anticipation (not prediction)

of future conditions

- Better assessment of risk
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How do we develop tree-ring reconstructions
of streamflow (aka paleohydrology)?
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In dry climates, tree growth is limited by
moisture availability

So:
— a dry year leads to a narrow growth ring
— a wet year leads to a wide growth ring

Douglas-fir, south San Juans, CO

// //
1977 1983

- Ring width mainly reflects precip from previous fall-winter
spring = soil moisture at start of growing season




The moisture signal recorded by trees in the
Interior western US is particularly strong

Western CO Annual Precip vs. Pinyon ring width (WIL731)
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 The “raw” ring widths from one tree are very closely correlated
with annual basin precipitation (r = 0.78) from 1930-2002

 Qur job is to capture and enhance the moisture signal, and reduce
noise, through careful sampling, replication, and data processing



Ring-width and annual streamflow - an indirect
but strong relationship

 The growth of moisture-sensitive trees responds to the
same set of climatic factors that influence streamflow
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Image courtesy of Dave Meko, LTRR



Collecting moisture-sensitive tree-ring records

900 yrs old’

e Dry sites up to 9000’ (2750m)

« Stands of old-appearing ponderosa
pine, pinyon pine, or Douglas-fir

e Collect cores from 20-30 trees (same
species)




Crossdating the samples

 Because of the common climate signal, the pattern of wide
and narrow rings is highly replicated between trees at a site,
and between nearby sites

« This allows crossdating: the assignment of absolute dates to

annual rings
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Measuring and detrending the samples

Measure each ring with
computer-assisted measurement
system with sliding stage

— captures position of core to
nearest 0.001mm (1 micron)

el L L LT o Ring-width series typically have
" "W | l 1 a declining trend because of
o M tree geometry
"1 '+ These are low-frequency noise
‘ W (i.e. non-climatic)
|

RING WIDTH

 So we detrend ring series are

IL:‘:: ML with straight line, exponential
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Ring width index

The site chronology is the robustly weighted
average of all ring-width series for each year
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Moisture-sensitive
chronologies
developed 2000-07
by CU - INSTAAR
Dendro Lab

» Average length: 550
years (but >1000
years using dead
wood)

» Strong relationships
(r>0.5) with annual
precipitation and
annual streamflow
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Moisture-sensitive
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Overview of reconstruction methodology

Tree-ring data
(predictors)

Observed streamflow
(predictand)

¥

¥

Statistical calibration: regression

Reconstruction model

Time series of reconstructed streamflow

based on Meko 2005

N

>40 yrs of
overlap



- ;‘,_,J'

SLK + TRG + ARC + RED + CAT + DRY + MCP + DOU
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Full reconstruction of Rio Grande annual
streamflow, 1536-1999
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 Generally, greater year-to-year variability before 1900
e Also, more extreme high and low flows before 1900



Uncertainty in the reconstructions (the “fine print”)

* Tree-ring data are imperfect recorders of climate and streamflow,
so there will always be uncertainty in the reconstructed values

» The statistical uncertainty in the reconstruction model can be
estimated from the validation errors (RMSE) and used to generate
confidence intervals

« RMSE does not capture the uncertainty resulting from the
sensitivity of model output to the choices made in the treatment of
the tree-ring data and development of the model

* A reconstruction is a best estimate of past streamflows, and each
annual point represents the central tendency of a range of
plausible values, given the uncertainty



Gage records (@)
reconstructed
2002-2007 using
our tree-ring
chronologies

e Over 30
reconstructions,
developed using
observed records
from partners

e 350-700 years
long, except new
Lees Ferry (1250
years)
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Gage records @
reconstructed
2002-2007 using
our tree-ring
chronologies

e Over 30
reconstructions,
developed using
observed records
from partners

e 350-700 years
long, except new
Lees Ferry (1250
years)
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WWA - CLIMAS project:
Tree-Ring Reconstructions of Hydroclimatic
Variability in the Rio Grande Basin, New Mexico

1) Workshop (November 2007) to introduce the use of tree-
ring reconstructions of streamflow, and identify gages of
Interest

2) Develop a set of reconstructions from existing tree-ring
data based on gages identified above

3) Follow-up workshop (last Friday) to deliver new
reconstructions, explore applications, and plan future
collaborative work

4) Develop web page to feature Rio Grande
reconstructions
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Estimation of Otowi natural flows
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Otowi Natural — comparison w/ Otowi Gaged

Flow (MAF)

Flow (MAF)
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 Correlation Otowi NRCS — Otowi Natural: 0.985 — so essentially
identical records, but different scaling




Tree-ring network — Otowi natural flow reconstruction
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Reconstruction Accuracy

Full-Period Model: R?=0.74
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acre feet

Otowi Reconstructed Natural Streamflow,
Water Year 1450-2002

with 80% confidence interval (gray lines)
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* 1977, driest in the gage record, is 10", 34%



acre feet
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Rio Grande, Otowi reconstructed natural streamflow

and natural flow estimate for gage, 1958-2007
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Flow (% of Mean)
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Otowi reconstructed natural flow, decadal-scale
variability (gaussian smoothing) with 80% confidence

band
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Uncertainty at 80% ClI, for this smoothing, is about £5 percent of the long-
term mean

More confidence in the timing of anomalies than in specific magnitudes



Otowi natural flow reconstruction, distribution of annual flows
by century
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Drought Duration and Frequency, Otowi
Drought is defined as a single year or set of n consecutive years below
the long-term median
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Canadian River flow reconstruction

A ‘ ‘ ‘ » Log transformation of flows

» 5-predictor model, selected
forward stepwise

 Variance explained =61%
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Canadian River nr Sanchez Reconstruction,

Water Year 1604-1997,
with 80% confidence interval (gray lines) and gage record (red line)
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How can reconstructions of streamflow can
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Annual streamflow, MAF
o
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be used in water management?

1500 1600 1700 1800 1900 2000

Figure 5. Demands & Supplies: 15% Reduced Flow Hydrology, Current Trends
Scenario (demand = 31,700 AF/year).

Reconstruction data Decision support



Using the reconstructions - two degrees of difficulty

1) Provide long-term context for the gage record
« can be qualitative (graphics + text) or quantitative

2) Input into a system model to assess management
scenarios

e requires further processing of the reconstruction data
 can lead to more effective communication of risk



Denver Water - water supply yield analyses

Challenge:

Denver Water’s Platte and
Colorado Simulation Model
(PACSM) requires daily model
iInput from 450 locations

Solution:
An “analogue year” approach

« Match each year in the
reconstructed flows with one of the
45 model years (1947-1991) with
known hydrology and use that year’s
daily hydrology

 Years with more extreme wet/dry
values are scaled accordingly

e Data are assembled as new
seguences of model years

*PACSM is used to simulate the
entire tree-ring period, 1634-2002



Denver Water - water supply yield analyses
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Reservoir contents with 345 KAF demand and progressive drought restrictions
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Two paleo-droughts (1680s, 1840s) deplete contents lower than
1950s design drought



Applications of paleo-data in the Rio Grande Basin

NMISC - S. S. Papadopulos (MacClune, Llewellyn, Hathaway):

Used middle Rio Grande PDSI reconstruction to assess recurrence,
duration, and extreme 20" century wet and dry events in a long-term
context), and then to generate synthetic hydrologies representative of
long-term conditions to run in URGWOM

NMISC - AMEC Engineering

Will use non-parametric KNN approach to use tree-ring data to
generate sets of daily model input to run in the URGWOM model

City of Santa Fe — U. Arizona LTRR

Will develop new tree-ring chronologies and tree-ring
reconstructions of streamflow for the Santa Fe River to run in the
City's water supply model



OK, so paleo provides a bigger window on past hydrology,
but what about the future?

GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L22708, doe10.1029/2007GL0O3 1764, 2007

lick
grre
Full

Article

Warming may create substantial water supply shortages in the

Colorado River basin

Gregory J. McCabe' and David M. Wolock?

Received 21 August 2007; revised 19 October 2007; accepted 25 October 2007; published 27 November 2007,

[1] The high demand for water, the recent multivear
drought (1999-2007), and projections of global wamming
have raised questions about the long-term sustainability of
water supply in the southwestem United States. In this
study, the potential effects of specific levels of atmospheric
warming on water-vear streamflow in the Colorado River
basin are evaluated using a water-balance model, and the
results are analyzed within the context of a multi-century
tree-ring reconstruction { 14901998} of streamflow for the
basin. The results indicate that if future warming occurs in
the basin and is not accompanied by increased precipitation,
then the basin is likely to experience periods of water supply
shortages more severe than those inferred from the long-
term historical tree-ring reconstruction. Furthermore, the
modeling results suggest that future warming would
increase the likelihood of failure to meet the water

marmamdn ol tha MPalacada e amannad

Allanninan maow

substantially since the Compact was written [Diaz and
Anderson, 1995].

[4] The long-term sustainability of the water-supply sys-
tem in the Colorado River basin will be affected by the
future levels of natural flows that replenish the reservoirs.
One approach to defining future expectations of flow is to
“reconstruct”™ historical long-term flow estimates from tree
rings [Woodhouse et al, 2006]. This long-term historical
context provides an indication of flow conditions that have
occurred in the past and may occur in the future. A
contrasting approach to predicting future flow conditions
in the Colorado River basin is based on climate model
simulations. Christensen and Lettenmaier [2006], for ex-
ample, report 8% to 11% reductions in UCRB runoff by the
end of the 21st century.

[5] The objective of this study is to evaluate the sensi-
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Anthropogenic climate change will likely impact
future hydrology in the Rio Grande basin

* Precipitation change uncertain (increase? decrease?)

« Temperature increase very likely (already being observed
regionally and in most Iocatlonsgl

— Increase Iin evapotranspiration

— decrease in soil moisture

— decreased snowpack accumulation (more precip. falls as rain)
— Increased sublimation from snowpack

— earlier meltout of snowpack

» Likely effects on hydrology: lower flows, earlier peak flows

« Precipitation change could either (partly) mitigate these
effects or make things worse

 Was 2000+ drought the first salvo?



Down-scaled projections for the Rio Grande basin

Average monthly streamflow for Rio Grande and tributaries for 3
climate change models and the A1B scenario
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From: Hurd and Coonrod (July 2007) Climate Change Impacts on New Mexico’s Water Resources,
http://agecon.nmsu.edu/bhurd/hurdhome/index.htm




Paleohydrology + GCM output: best of both
worlds?

« Paleohydrology — captures full range of natural variability
better than gage records, but can’t predict the future

« GCM output éwith hydrologic downscaling) - represents
future trends (at least temp.), but poorly simulates interannual
and interdecadal variability

« Combine via hydrologic modeling = full natural variability +
future trends, to assess the joint risk of variability and change

« But how to characterize the uncertainty in the combined
product? Is it just too uncertain? Will public, stakeholders,
decisionmakers buy into it?



Integration of tree-ring flow reconstruction with

climate change scenarios - City of Boulder, with U. of
Colorado, AMEC, and Stratus Consulting, NOAA-funded

Monthly temps & precip, and observed streamflow (1953-2002) are
resampled to pair the paleo streamflows for 1566-2002 with corresponding
monthly temperature and precipitation

Effectively disaggregates the annual paleo streamflows into estimated
climatic variables (monthly precipitation and temperature) so that those
variables can be manipulated independently

Then the simulated monthly temperature and precipitation are input into a
snowmelt-runoff (SRM) and water-balance (WATBAL) model to produce
modeled Boulder Creek flows

Then changes in temperature and precipitation forecasted from climate
models are combined with the paleodata to produce simulations of past
hydrology under plausible future climate conditions

Allows water managers to assess the joint risks of climate variability and
climate change

Southwest Hydrology, Jan/Feb 2007
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Reduced Deliveries - A2 Dry 2070, Trace 257
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Conclusions

Tree-ring reconstructions exploit a robust relationship
between tree growth and moisture to provide useful
iInformation about past hydrologic variability

New reconstructions for the Rio Grande capture events and
regime shifts not seen in the observed hydrology

Reconstructions can be effectively used “as-is”, or processed
to input into models for rigorous policy and risk analyses

Expectations of future streamflows should be based on both
past natural variability - more fully seen in tree rings - and
projections of future climate



New web resource: Rio Grande TreeFlow

http://wwa.colorado.edu/resources/paleo/riogrande
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Search site
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Lacation: Western tater issessment > Resources > Tree-Ring Reconstrustions of Stresmilow > > Rio Grande Tree Flow

Rio Grande TreeFlow

Tree-ring reconstructions of streamflow and climate for the Rio Grande basin and
adjacent basins

Overview

Multi-century reconstructions of streamflow and climate based on tree rings effectively extend observed records, providing
more complete information about past hydrologic and climatic variahility to use in drought planning and water management. The
availability and use of these paleohydrologic and paleoclimatic data in the Rio Grande basin, though, has lagged behind other
rnajor river hasing in the West, particularly the Celorado River

The goal of an ongoing (2007-08) project involving WWA and CLIMAS researchers is to improve the usability of tree-ring
reconstructions of streamflow and climate in the Rio Grande bagin through (1) the development of new reconstructions, (2) the
presentation of two technical workshops (in Hovember 2007 and May 2008) for resource managers and stakeholders, (3) the
development of web-based visualization and analysis tools, and (4) a web resource to serve as a single source for
reconstruction data and guidance on how to use the data,

Available Reconstruction Data

The first reconstructions of annual streamflow in the Rio Grande basin were developed in 2005, for four gages in the upper Rio
Grande basin in Colorado, on behalf of the Rio Grande YWater Conservancy District. The current Rio Grande project has
generated three preliminary streamflow reconstructions, far the Rio Grande near Otowi (for both gaged and natural flow) and the
Canadian River near Sanchez

The map below and the links to the right provide access to the streamflow reconstruction data,

a T ! Data - Tree-ring reconstructions of
I\ L |
e A annual streamflow
{ SAG!
L - - 5
1 . b aRGD ¥ [ Rio Grande Basin
? ‘m ALA ¢ Saguache Creek near Saguache. CO
m COR fo | (BAG)
" |OK * Alamosa River above Terrace Reservoir,
y ‘ - CO (ALA)
f 'm RGO (s ¢ Rio Grande near Del Norte, CO (RGO}
| '-Culcmn' = CAN * Conejos River near Mogote, CO (COR)
dion R- ® Rio Grande near Otowi, N (RGO) - Otowi
§ « Albuguergue canad! NRCS gaqge - Otowi naturalized flow
‘5 | Canadian Basin
s iCanadian River near Sanchez, NM (CAN)
t) i :;:e n

e Qverview

 Access to Rio Grande/NM
reconstruction data

 Linksto
analysis/visualization tools

* Information about
applications of data

e Links to other resources

Future expansion - each item
above will have separate

page
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