RECLAMATION

Managing Water in the West

Stochastic Nonparametric Framework for Basin Wide Streamflow and Salinity Modeling

Application to Colorado River basin

Boulder Dendro Workshop James R. Prairie May 14, 2007

U.S. Department of the Interior Bureau of Reclamation

Recent conditions in the Colorado River Basin

- Below normal flows into Lake Powell 2000-2004
 - 62%, 59%, 25%, 51%, 51%, respectively
 - 2002 at 25% lowest inflow recorded since completion of Glen Canyon Dam

- Some relief in 2005
 - 105% of normal inflows
- Not in 2006!
 - 73% of normal inflows
- Current 2007 forecast
 - 50% of normal inflows

Colorado River at Lees Ferry, AZ

Continuing pressures in the basin

- Evidence of shift in annual cycle of precipitation
 - Regonda et al. 2005; Cayan et al. 2001
 - Mote, 2003
- Links with large-scale climate
 - Hoerling and Kumar, 2003
- Trends indicated increased drought conditioned
 - Andreadis and Lettenmaier, 2006
- Increasing population growth
 - Growing water demand by M&I
- Further development of allocated water supply

Motivation

- How unusual is the current dry spell?
- How can we simulate stream flow scenarios that are consistent with the current dry spell and other realistic conditions?
- Key question for this research is how to plan for effective and sustainable management of water resources in the basin?
 - a robust framework to generate realistic basin-wide streamflow scenarios
 - a decision support model to evaluate operating policy alternatives for efficient management and sustainability of water resources in the basin.

Can we provide answers?

- What is currently possible
 - ISM: captures natural variability of streamflow
 - Only resamples the observed record
 - Limited dataset
- How can we improve?
 - Improve stochastic hydrology scenarios
 - Incorporate Paleoclimate information

How do we accomplish this?

- Proposed framework
 - Robust space-time disaggregation model
 - central component of all these sections.
 - Incorporating Paleoclimate Information
 - Combine observed and paleostreamflow data
 - Colorado River decision support system
 - Colorado River Simulation System (CRSS)
 - Provides means policy analysis

Flowchart of study

Flowchart of study

observed record

Woodhouse et al. 2006

Stockton and Jacoby, 1976

Hirschboeck and Meko, 2005

Hildalgo et al. 2002

Simulation flowchart

Nonhomogeneous Markov model

Generate system state (S_t)

Generate flow conditionally (K-NN resampling)

$$f(x_t | S_t, S_{t-1}, x_{t-1})$$

FIG. 1. Precipitation-Occurrence Process $(t_1, t_2, \ldots = Day Indices; t_{w_1}, t_{w_2}, \ldots = Wet-Day Indices; t_{d_1}, t_{d_2}, \ldots = Dry-Day Indices; t_{dw_1}, t_{dw_2}, \ldots = Day Indices of Transition from Dry Day to Wet Day; and <math>t_{wd_1}, t_{wd_2}, \ldots = Day Indices of Transition from Wet Day to Dry Day)$

Source: Rajagopalan et al., 1996

Nonhomogenous Markov model with Kernel smoothing (Rajagopalan et al., 1996)

 TP for each year are obtained using the Kernel Estimator

$$P_{dw}(t) = \frac{\sum_{i=1}^{ndw} K\left(\frac{t - t_{dw_i}}{h_{dw}}\right)}{\sum_{i=1}^{nd} K\left(\frac{t - t_{d_i}}{h_{dw}}\right)} \qquad P_{dd}(t) = 1 - P_{dw}(t)$$

- h determined with LSCV
- 2 state, lag 1 model was chosen
 - 'wet (1)' if flow above annual median of observed record; 'dry (0)' otherwise.
 - AIC used for order selection (order 1 chosen)

Window length chosen with LSCV

Paleo Conditioned

- NHMC with smoothing
- 500 simulations
- 60 year length

Drought and Surplus Statistics

No Conditioning

- ISM
- 98 simulations
- 60 year length

Paleo Conditioned

- NHMC with smoothing
- 2 states
- 500 simulations
- 60 year length

Conclusions

- Combines strength of
 - Reconstructed paleo streamflows: system state
 - Observed streamflows: flows magnitude
- Develops a rich variety of streamflow sequences
 - Generates sequences not in the observed record
 - Generates drought and surplus characteristic of paleo period
- TPM provide flexibility
 - Nonhomogenous Markov chains
 - Nonstationary TPMs
 - Use TPM to mimic climate signal (e.g., PDO)
 - Generate drier or wetter than average flows

Flowchart of study

Disaggregation scheme

Proposed Methodology

Resampling from a conditional PDF

$$f(X|Z) = \frac{f(X,Z)}{\int f(X,Z)dX}$$
 Joint probability Marginal probability

- With the "additivity" constraint
- Where Z is the annual flow X are the monthly flows
- Or this can be viewed as a spatial problem
 - Where Z is the sum of d locations of monthly flows X are the d locations of monthly flow
- **Annual stochastic flow**
 - modified K-NN lag-1 model (Prairie et al., 2006)
 - 500 annual simulations

Lees Ferry

intervening

Cross Correlation

 Total sum of intervening

Probability Density Function

- Lees Ferry
- Intervening

Probability Density Function

- Lees Ferry
- Total sum of intervening

Conclusions

- A flexible, simple, framework for space-time disaggregation is presented
 - Eliminates data transformation
 - Parsimonious
 - Ability to capture any arbitrary PDF structure
 - Preserves all the required statistics and additivity
- Easily be conditioned on large-scale climate information
- Can be developed in various scheme to fit needs
- View nonparametric methods as an additional stochastic view of data set
 - Adds to ISM and parametric methods

Flowchart of study

Colorado River Simulation System (CRSS)

- Requires realistic inflow scenarios
- Captures basin policy
- Long-term basin planning model
- Developed in RiverWare (Zagona et al. 2001)
- Run on a monthly time step

Hydrologic Sensitivity Runs

- 4 hydrologic inflow scenarios
 - Records sampled from a dataset using ISM
 - Observed flow (1906-2004)
 - 99 traces
 - Paleo flow (1490-1997) (Woodhouse et al., 2006)
 - 508 traces
 - Other
 - Paleo conditioned (Prairie, 2006)
 - 125 traces
 - Parametric stochastic (Lee et al., 2006)
 - 100 traces
- All 4 inflow scenarios were run for each alternative

ISM-Based Flows

- Historic natural flow (1906-2004): averages 15.0 MAF
- Paleo reconstruction (1490-1997): averages 14.6 MAF
 - Lees B from Woodhouse et al., 2006

observed record

Woodhouse et al. 2006

Stockton and Jacoby, 1976

Hirschboeck and Meko, 2005

Hildalgo et al. 2002

Alternate Stochastic Techniques

- Paleo conditioned
 - Combines observed and paleo streamflows
 - Generates
 - Observed flow magnitudes
 - Flow sequences similar to paleo record
- Parametric
 - Fit observed data to appropriate model (i.e., CAR)
 - Generates
 - Flow magnitudes not observed
 - Flow sequences similar to observed record

CRSS Modeling Assumptions – Alternate Hydrologic Sequences

- Index Sequential
 Method & Alternate
 Stochastic Techniques
- Alternate Hydrologic
 Sequences & Results

Boxplots of Basic Statistics

Annual Natural Flow at Lees Ferry No Action Alternative Years 2008-2060

Lake Powell End of July Elevations No Action Alternative 10th, 50th and 90th Percentile Values

Lake Mead End of December Elevations No Action Alternative 10th, 50th and 90th Percentile Values

Glen Canyon 10-Year Release Volume No Action Alternative Years 2008-2060

Final statements

- Integrated flexible framework
 - Simple
 - Robust
 - Parsimonious
- Easily represents nonlinear relationship
- Effective policy analysis requires use of stochastic methods other than ISM
- Presented framework allows an improved understanding for operation risks and reliability
- Allows an understanding of climate variability risks based on paleo hydrologic state information

Future direction

- Alternate annual simulation models (parametric, semi parametric) Include correlation from first month and last month
- Apply hidden Markov model
- Explore additional policy choice. Optimization framework to include economic benefits
- Can easily consider climate change scenarios using climate projections to simulate annual flow

Major Contributions

- Prairie, J.R., B. Rajagopalan, U. Lall, T. Fulp (2006) A stochastic nonparametric technique for space-time disaggregation of streamflows, Water Resources Research, (in press).
- Prairie, J.R., B. Rajagopalan, U. Lall, T. Fulp (2006), A stochastic nonparametric approach for streamflow generation combining observational and paleo reconstructed data, Water Resources Research, (under review).
- Prairie, J.R., et al. (2006) Comparative policy analysis with various streamflow scenarios, (anticipated).

Additional Publications

Prairie, J.R., B. Rajagopalan, T.J. Fulp, and E.A. Zagona (2006),
 Modified K-NN Model for Stochastic Streamflow Simulation,
 ASCE Journal of Hydrologic Engineering, 11(4) 371-378.

Acknowledgements

- To my committee and advisor. Thank you for your guidance and commitment.
 - Balaji Rajagopalan, Edith Zagona, Kenneth Strzepek,
 Subhrendu Gangopadhyay, and Terrance Fulp
- Funding support provided by Reclamation's Lower Colorado Regional Office
- Reclamation's Upper Colorado Regional Office
 - Kib Jacobson, Dave Trueman
- Logistical support provided by CADSWES
- Expert support provided from
 - Carly Jerla, Russ Callejo, Andrew Gilmore, Bill Oakley